Annals of Global Analysis and Geometry

, Volume 17, Issue 4, pp 301–314 | Cite as

Infinite Distance Components of the Boundary of Moduli Spaces of Conformal Structures

  • Lutz Habermann


We continue the investigation of the L2-geometry of moduli spaces of conformal structures, where the L2-metric is induced from the canonical metrics for conformal structures that supports a positive scalar curvature metric introduced in previous papers.

canonical metric conformal structure L2-geometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arakelov, S. J.: An intersection theory for divisors on an arithmetic surface, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1179–1192.Google Scholar
  2. 2.
    Aubin, T.: Fonction de Green et valeurs propres du laplacien, J. Math. Pures Appl. 53 (1974), 347–371.Google Scholar
  3. 3.
    Bartnik, R.: The mass of an asymptotically flat manifold, Comm. Pure Appl.Math. 34 (1986), 661–693.Google Scholar
  4. 4.
    Besse, A. L.: Einstein Manifolds, Springer-Verlag, Berlin, 1987.Google Scholar
  5. 5.
    Calabi, E. and Hartman, P.: On the smoothness of isometries, Duke Math. J. 37 (1970), 741–750.Google Scholar
  6. 6.
    Fischer, A. E. and Marsden, J. E.: The manifold of conformally equivalent metrics, Canad. J. Math. 29 (1977), 193–209.Google Scholar
  7. 7.
    Günther, M.: Conformal normal coordinates, Ann. Global Anal. Geom. 11 (1993), 173–184.Google Scholar
  8. 8.
    Gromov, M. and Lawson, H. B.: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Etudes Sci. Publ. Math. 58 (1983), 83–196.Google Scholar
  9. 9.
    Habermann, L.: Conformal metrics of constant mass. Preprint, MPI für Mathematik in den Naturwissenschaften, Leipzig, 1998.Google Scholar
  10. 10.
    Habermann, L. and Jost, J.: Green functions and conformal geometry, J. Differential Geom., to appear.Google Scholar
  11. 11.
    Hersch, J.: Transplantation harmonique, transplantation par modules, et théorèmes isopérimétriques, Comment. Math. Helv. 44 (1969), 354–366.Google Scholar
  12. 12.
    King, A. D. and Kotschick, D.: The deformation theory of anti-self-dual conformal structures, Math. Ann. 294 (1992), 591–609.Google Scholar
  13. 13.
    Kobayashi, O.: Scalar curvature of a metric with unit volume, Math. Ann. 279 (1987), 253–265.Google Scholar
  14. 14.
    Lee, J. M. and Parker, T. H.: The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987), 37–91.Google Scholar
  15. 15.
    Leutwiler, H.: A Riemannian Metric Invariant under Möbius Transformations inn, Lecture Notes in Math. 1351, Springer-Verlag, Berlin, 1988, pp. 223–235.Google Scholar
  16. 16.
    Masur, H.: The extension of the Weil-Petersson metric to the boundary of Teichmüller space, Duke Math. J. 43 (1976), 623–635.Google Scholar
  17. 17.
    Nayatani, S.: Patterson-Sullivan measure and conformally flat metrics, Math. Z. 225 (1997), 115–131.Google Scholar
  18. 18.
    Schoen, R. M. and Yau, S. T.: On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65 (1979), 45–76.Google Scholar
  19. 19.
    Schoen, R. M. and Yau, S. T.: Proof of the positive action conjecture in quantum relativity, Phys. Rev. Lett. 42 (1979), 547–548.Google Scholar
  20. 20.
    Schoen, R. M. and Yau, S. T.: Proof of the positive mass theorem, II, Comm. Math. Phys. 79 (1981), 231–260.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Lutz Habermann
    • 1
  1. 1.Max-Planck-Institut für Mathematik in den NaturwissenschaftenLeipzigGermany

Personalised recommendations