Annals of Global Analysis and Geometry

, Volume 15, Issue 1, pp 45–50 | Cite as

Generalized Cartan Identities on Isoparametric Manifolds

  • Li Haizhong


We first introduce the concept of an isoparametric manifold, which is the natural generalization of the concept of an isoparametric hypersurface in a real space form and that of a space-like isoparametric hypersurface in a Lorentzian space form. Finally, we establish generalized Cartan identities for isoparametric manifolds.

isoparametric hypersurface Codazzi tensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cecil, T. E. and Ryan, P. J.: Tight and Taut Immersions of Manifolds, Pitman Advanced Publishing Program, 1985.Google Scholar
  2. 2.
    Cheng, S. Y. and Yau, S. T.: Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), 195–204.zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Derdziński, A. and Shen, C. L.: Codazzi tensor fields, curvature and Pontryagin forms, Proc. London Math. Soc., 47(3) (1983), 15–26.MathSciNetGoogle Scholar
  4. 4.
    Oliker, V. I. and Simon, U.: Codazzi tensors and equations of Monge-Ampere type on compact manifolds of constant sectional curvature, J. Reine Angew. Math. 342 (1983), 35–65.zbMATHMathSciNetGoogle Scholar
  5. 5.
    Nomizu, K.: Elie Cartan's work on isoparametric families of hypersurfaces, Proc. Symposia in Pure Math., Amer. Math. Soc. 27(part 2), (1975), 191–200.zbMATHMathSciNetGoogle Scholar
  6. 6.
    Nomizu, K.: On isoparametric hypersurfaces in the Lorentzian space forms, Japan J. Math. 7 (1981), 217–226.zbMATHMathSciNetGoogle Scholar
  7. 7.
    Simon, U.: Codazzi Tensors, Lecture Notes in Mathematics, Vol. 838 (1979), pp. 289–296.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Li Haizhong
    • 1
  1. 1.Department of Applied MathematicsTsinghua UniversityBeijingPeople's Republic of China

Personalised recommendations