Skip to main content
Log in

The Oral Route for the Administration of Cytotoxic Drugs: Strategies to Increase the Efficiency and Consistency of Drug Delivery

  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

There is an increasing interest to administer cytotoxic drugs topatients by the oral route. Quality of life issues, treatmentadvantages and pharmaco-economics are major arguments in favorof oral therapy. However, low or moderate bioavailability incombination with considerable interpatient variability arefrequently observed which may reduce the feasibility of the oralroute for this class of drugs with a generally narrow therapeuticwindow. Until recently, investigators focused on absorptionenhancers which slightly damage the intestinal surface such assalicylates, methylxantines and surfactants to improve the oralbioavailability of drugs. To date, a shift can be seen towardsmore subtle mechanisms to enhance the absorption. This reviewarticle focuses on two important mechanisms that determine theoral bioavailability of cytotoxic drugs. These include thepresence of drug transporters in the intestinal epitheliumpumping drugs into the intestinal lumen, such as MDR1 typeP-glycoproteins, and first-pass elimination by cytochrome P450isoenzymes (e.g. 3A4 and 3A5) or other enzymes in the intestinesand/or liver. Currently preclinical and clinical studies arebeing performed to explore the feasibility of blocking thesetransporters/enzymes in order to achieve higher and less variablesystemic drug levels after oral dosing. This review gives anupdate of the results of these studies. It is concluded however,that further research to unravel the processes involved in oraldrug uptake is warranted to make the oral route a more efficientand consistent way of drug administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Demario MD, Ratain MJ: Oral chemotherapy: Rationale and future directions. J Clin Oncol 16: 2557–2567, 1998

    Google Scholar 

  2. Hoff PM, Pazdur R, Benner SE, Canetta R: UFT and leucovorin: a review of its clinical development and therapeutic potential in the oral treatment of cancer. Anticancer Drugs 9: 479–490, 1998

    Google Scholar 

  3. Shirasaka T, Shimamato Y, Ohshimo H, Yamaguchi M, Kato T, Yonekura K, Fukushima M: Development of a novel form of an oral 5-fluorouracil derivative (S-1) directed to the potentiation of the tumor selective cytotoxicity of 5-fluorouracil by two biochemical modulators. Anticancer Drugs 7: 548–557, 1996

    Google Scholar 

  4. Budman DR, Meropol NJ, Reigner B, Creaven PJ, Lichtman SM, Berghorn E, Behr J, Gordon RJ, Osterwalder B, Griffin T: Preliminary studies of a novel oral fluoropyrimidine carbamate: capecitabine. J Clin Oncol 16: 1795–1802, 1998

    Google Scholar 

  5. McKeage MJ, Mistry P, Ward J, Boxall FE, Loh S, O'Neill C, Ellis P, Kelland LR, Morgan SE, Murrer B, Santabarbara P, Harrap KR, Judson IR: A phase I and pharmacology study of an oral platinum complex, JM216: dose-dependent pharmacokinetics with single-dose administration. Cancer Chemother Pharmacol 36: 451–458, 1995

    Google Scholar 

  6. Liu G, Franssen E, Fitch MI, Warner E: Patient preferences for oral versus intravenous palliative chemotherapy. J Clin Oncol 15: 110–115, 1997

    Google Scholar 

  7. Kakolyris S, Samonis G, Koukourakis M, Vlachonicolis I, Chalkiadakis G, Kalbakis K, Souglakos I, Agelaki S, Toloudis P, Georgoulias V: Treatment of non-small-cell lung cancer with prolonged oral etoposide. Am J Clin Oncol 21: 505–508, 1998

    Google Scholar 

  8. Gridelli C, Rossi A, Scognamiglio F, Guida C, Fiore F, Gatani T, Scoppa G, Pergola M: Carboplatin plus oral etoposide in elderly patients with advanced non small cell lung cancer. A phase II study. Anticancer Res 17: 4755–4758, 1997

    Google Scholar 

  9. Sullivan SD, Mozaffari E, Johnson ES, Wolitz R, Follansbee SE: An economic evaluation of oral compared with intravenous ganciclovir for maintenance treatment of newly diagnosed cytomegalovirus retinitis in AIDS patients. Clin Ther 18: 546–558, 1996

    Google Scholar 

  10. Hellriegel ET, Bjornsson TD, Hauck WW: Interpatient variability in bioavailability is related to the extent of absorption: implications for bioavailability and bioequivalence studies. Clin Pharmacol Ther 60: 601–607, 1996

    Google Scholar 

  11. Urquhart J: Patient compliance with crucial drug regimens: implications for prostate cancer. Eur Urol 29: Suppl 2: 124–131, 1996

    Google Scholar 

  12. Davies HA, Lilleyman JS: Compliance with oral chemotherapy in childhood lymphoblastic leukaemia. Cancer Treat Rev 21: 93–103, 1995

    Google Scholar 

  13. Macheras P, Reppas C, Dressman JB: Biopharmaceutics of orally administered drugs. 1st edition, Ellis Horwood, 1995

  14. Rowland M, Tozer TN: Clinical parmacokinetics: Concepts and applications. 3rd edition. Baltimore, Williams and Wilkins, 1995

    Google Scholar 

  15. Kararli TT: Gastro intestinal absorption of drugs. Crit Rev Ther Drug Carrier Syst 6: 39–86, 1989

    Google Scholar 

  16. Rang HP, Dale MM: Pharmacology. 3rd edition. Churchill Livingstone, 1995

  17. Hartman NR, Yarchoan R, Pluda JM, Thomas RV, Wyvill KM, Flora KP, Broder S, Johns DG: Pharmacokinetics of 20,30-dideoxyninosine in patients with severe human immunodeficiency infection. II. The effects of different oral formulations and the presence of other medications. Clin Pharmacol Ther 50: 278–285, 1991

    Google Scholar 

  18. Williams L, Hill DP, Jr., Davis JA, Lowenthal DT: The influence of food on the absorption and metabolism of drugs: an update. Eur J Drug Metab Pharmacokinet 21: 201–211, 1996

    Google Scholar 

  19. Hoetelmans RM, Meenhorst PL, Mulder JW, Burger DM, Koks CH, Beijnen JH: Clinical pharmacology of HIV protease inhibitors: focus on saquinavir, indinavir, and ritonavir. Pharm World Sci 19: 159–175, 1997

    Google Scholar 

  20. Tsuji A, Tamai I: Carrier-mediated intestinal transport of drugs. Pharm Res 13: 963–977, 1996

    Google Scholar 

  21. Juliano RL, Ling V: A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455: 152–162, 1976

    Google Scholar 

  22. Endicott JA, Ling V: The biochemistry of P-glycoproteinmediated multidrug resistance. Annu Rev Biochem 58: 137–171, 1989

    Google Scholar 

  23. Gottesman MM, Pastan I: Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62: 385–427, 1993

    Google Scholar 

  24. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC: Cellular localization of the multidrugresistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 84: 7735–7738, 1987

    Google Scholar 

  25. Lankas GR, Cartwright ME, Umbenhauer D: P-glycoprotein deficiency in a subpopulation of CF-1 mice enhances avermectin-induced neurotoxicity. Toxicol Appl Pharmacol 143: 357–365, 1997

    Google Scholar 

  26. Lankas GR, Wise LD, Cartwright ME, Pippert T, Umbenhauer DR: Placental P-glycoprotein defiency enhances susceptibility to chemically induced birth defects in mice. Reprod Toxicol 12: 457–463, 1998

    Google Scholar 

  27. Schinkel AH, Smit JJM, Van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CAAM, van der Valk MA, Robanus-Maandag EC, te Riele HPJ, Berns AJM, Borst P: Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77: 491–502, 1994

    Google Scholar 

  28. Schinkel AH, Mayer U, Wagenaar E, Mol CAAM, van Deemter L, Smit JJM, van der Valk MA, Voordouw AC, Spits H, Van Tellingen O, Zijlmans JM, Fibbe WE, Borst P: Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci USA 94: 4028–4033, 1997

    Google Scholar 

  29. Sparreboom A, van Asperen J, Mayer U, Schinkel AH, Smit JW, Meijer DKF, Borst P, Nooijen WJ, Beijnen JH, van Tellingen O: Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci USA 94: 2031–2035, 1997

    Google Scholar 

  30. Back DJ, Rogers SM: Review: first-pass metabolism by the gastrointestinal mucosa. Aliment Pharmacol Ther 1: 339–357, 1987

    Google Scholar 

  31. Kolars JC, Awni WM, Merion RM, Watkins PB: First-pass metabolism of cyclosporin by the gut. Lancet 338: 1488–1490, 1991

    Google Scholar 

  32. Webber IR, Peters WHM, Back DJ: Cyclosporin metabolism by human gastrointestinal mucosal microsomes. Br J Clin Pharmacol 33: 661–664, 1992

    Google Scholar 

  33. Gomez DY, Wacher VJ, Tomlanovich SJ, Hebert MF, Benet LZ: The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporine. Clin Pharmacol Ther 58: 15–19, 1995

    Google Scholar 

  34. Kolars JC, Schmiedlin-Ren P, Schuetz JD, Fang C, Watkins PB: Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J Clin Invest 90: 1871–1878, 1992

    Google Scholar 

  35. Kolars JC, Lown KS, Schmiedlin-Ren P, Ghosh M, Fang C, Wrighton SA, Merion RM, Watkins PB: CYP3A gene expression in human gut epithelium. Pharmacogenetics 4: 247–259, 1994

    Google Scholar 

  36. Krishna DR, Klotz U: Extrahepatic metabolism of drugs in humans. Clin Pharmacokinet 26: 144–160, 1994

    Google Scholar 

  37. Paine MF, Khalighi M, Fisher JM, Shen DD, Kunze KL, Marsh CL, Perkins JD, Thummel KE: Characterization of interintestinal and intraintestinal variations in human CYP3Adependent metabolism. J Pharmacol Exp Ther 283: 1552–1562, 1997

    Google Scholar 

  38. Lown KS, Kolars JC, Thummel KE, Barnett JL, Kunze KL, Wrighton SA, Watkins PB: Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel. Lack of prediction by the erythromycin breath test. Drug Metab Dispos 22: 947–955, 1994

    Google Scholar 

  39. Guengerich FP: Characterization of human cytochrome P450 enzymes. FASEB J 6: 745–748, 1992

    Google Scholar 

  40. Wacher VJ, Wu CY, Benet LZ: Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and 239 P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog 13: 129–134, 1995

    Google Scholar 

  41. Zeller FP, Ueda CT, Wulf BG, Meyers DG: Effect of caffeine on the oral absorption and disposition of quinidine. Clin Pharm 3: 72–75, 1984

    Google Scholar 

  42. Nakamura J, Takamura R, Kimura T, Muranishi S, Sezaki H: Enhancement effect of methylxanthines on the intestinal absorption of poorly absorbable dyes from the rat small intestine. Biochem Pharmacol 28: 2957–2960, 1979

    Google Scholar 

  43. Whitmore DA, Brookes LG, Wheeler KP: Relative effects of different surfactants on intestinal absorption and the release of proteins and phospholipids from the tissue. J Pharm Pharmacol 31: 277–283, 1979

    Google Scholar 

  44. Benet LZ, Wu CY, Hebert MF, Wacher VJ: Intestinal drug metabolism and antitransport processes: A potential paradigm shift in oral drug delivery. J Contr Release 39: 139–143, 1996

    Google Scholar 

  45. Berg SL, Tolcher A, O'Shaughnessy JA, Denicoff AM, Noone M, Ognibene FP, Cowan KH, Balis FM: Effect of Rverapamil on the pharmacokinetics of paclitaxel in women with breast cancer. J Clin Oncol 13: 2039–2042, 1995

    Google Scholar 

  46. Wishart GC, Bissett D, Paul J, Jodrell D, Harnett A, Habeshaw T, Kerr DJ, Macham MA, Soukop M, Leonard RCF, Knepil J, Kaye SB: Quinidine as a resistance modulator of epirubicin in advanced breast cancer: mature results of a placebo-controlled randomized trial. J Clin Oncol 12: 1771–1777, 1994

    Google Scholar 

  47. Solary E, Caillot D, Chauffert B, Casasnovas RO, Dumas M, Maynadie M, Guy H: Feasibility of using quinine, a potential multidrug resistance-reversing agent, in combination with mitoxantrone and cytarabine for the treatment of acute leukernia. J Clin Oncol 10: 1730–1736, 1992

    Google Scholar 

  48. van der Graaf WTA, de Vries EGE, Uges DRA, Nanninga AG, Meijer C, Vellenga E, Mulder POM, Mulder NH: In vitro and in vivo modulation of multidrug resistance with amiodarone. Int J Cancer 48: 616–622, 1991

    Google Scholar 

  49. Ferry DR, Traunecker H, Kerr DJ: Clinical trials of Pglycoprotein reversal in solid tumours. Eur J Cancer 32A: 1070–1081, 1996

    Google Scholar 

  50. Toffoli G, Sorio R, Gigante M, Corona G, Galligioni E, Boiocchi M: Cyclosporin A as a multi drug-resistant modulator in patients with renal cell carcinoma treated with teniposide. Br J Cancer 75: 715–721, 1997

    Google Scholar 

  51. Boesch D, Gaveriaux C, Jachez B, Pourtier-Manzanedo A, Bollinger P, Loor F: In vivo circumvention of P-glycoproteinmediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res 51: 4226–4233, 1991

    Google Scholar 

  52. Covelli A: SDZ PSC 833: A new multidrug-resistance modulator. Tumori 83: S21-S24, 1997

    Google Scholar 

  53. Hyafil F, Vergely C, Du Vignaud P, Grand-Perret T: In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res 53: 4595–4602, 1993

    Google Scholar 

  54. Booth CL, Brouwer KR, Brouwer KLR; Effect of multidrug resistance modulators on the hepatobillary disposition of doxorubicin in the isolated perfused rat liver. Cancer Res 58: 3641–3648, 1998

    Google Scholar 

  55. Dantzig AH, Shepard RL, Cao J, Law KL, Ehlhardt WJ, Baughman TM, Bumol TF, Starling JJ: Reversal of Pglycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Res 56: 4171–4179, 1996

    Google Scholar 

  56. Starling JJ, Shepard RL, Cao J, Law KL, Norman BH, Kroin JS, Ehlhardt WJ, Baughman TM, Winter MA, Bell MG, Shih C. Gruber J, Elmquist WF, Dantzig AH: Pharmacological characterization of LY335979: a potent cyclopropyldibenzosuberane modulator of P-glycoprotein. Adv Enzyme Regul 37: 335–347, 1997

    Google Scholar 

  57. Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T: Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem 268: 6077–6080, 1993

    Google Scholar 

  58. Spoelstra EC, Westerhoff HV, Pinedo HM, Dekker H, Lankelma J: The multidrug-resistance-reverser verapamil interferes with cellular P-glycoprotein-mediated pumping of daunorubicin as a non-competing substrate. Eur J Biochem 221: 363–373, 1994

    Google Scholar 

  59. Archinal-Mattheis A, Rzepka RW, Watanabe T, Kokubu N, Itoh Y, Combates NJ, Bair KW, Cohen D: Analysis of the interactions of SDZ PSC 833 ([30-keto-Bmt1]Val2]-cyclosporine), a multidrug resistance modulator, with Pglycoprotein. Oncol Res 7: 603–610, 1995

    Google Scholar 

  60. Twentyman PR, Bleehen NM: Resistance modification by PSC-833, a novel non-immunosuppressive cyclosporin. Eur J Cancer 27: 1639–1642, 1991

    Google Scholar 

  61. Smith AJ, Mayer U, Schinkel AH, Borst P: Availability of PSC833, a substrate and inhibitor of P-glycoproteins, in various concentrations of serum. J Nat Cancer Inst 90: 1161–1166, 1998

    Google Scholar 

  62. Jette L, Murphy GF, Beliveau R: Drug binding to Pglycoprotein is inhibited in normal tissues following SDZPSC 833 treatment. Int J Cancer 76: 729–737, 1998

    Google Scholar 

  63. van Asperen J, van Tellingen O, Sparreboom A, Schinkel AH, Borst P, Nooijen WJ, Beijnen JH: Enhanced oral bioavailability of paclitaxel in mice treated with the Pglycoprotein blocker SDZ PSC 833. Br J Cancer 76: 1181–1183, 1997

    Google Scholar 

  64. van Asperen J, van Tellingen O, van der Valk MA, Rozenhart M, Beijnen JH: Enhanced oral absorption and decreased elimination of paclitaxel in mice with cyclosporin A. Clin Cancer Res 4: 2293–2297, 1998

    Google Scholar 

  65. Harris JW, Rahman A, Kim BR, Guengerich FP, Collins JM: Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res 54: 4026–4035, 1994

    Google Scholar 

  66. Meerum Terwogt JM, Beijnen JH, ten Bokkel Huinink WW, Rosing H, Schellens JHM: Co-administration of cyclosporin enables oral therapy with paclitaxel. Lancet 352: 285, 1998

    Google Scholar 

  67. Malingré MM, Schellens JHM, Duchin K, Rosing H, Beijnen JH: Oral paclitaxel in a twice daily dose regimen. Br J Clin Pharmacol 47: 463P, 1999

    Google Scholar 

  68. Malingré MM, Meerum Terwogt JM, Beijnen JH, Rosing H, Koopman FJ, van Tellingen O, ten Bokkel Huinink WW, Swart M, Duchin K, Schellens JHM: Clinical pharmacology of oral paclitaxel in a dose escalating study. Proc Am Soc Clin Oncol 18: 166a, 1999

    Google Scholar 

  69. Meerum Terwogt JM, Malingré MM, Beijnen JH, van Tellingen O, Rosing H, Koopman FJ, ten Bokkel Huinink WW, Swart M, Duchin K, Schellens JHM: Mass balance of paclitaxel (Paxene) in humans after both intravenous and oral administration. Proc Am Soc Clin Oncol 18: 190a, 1999

    Google Scholar 

  70. Wils P, Phung-Ba V, Warnery A, Lechardeur D, Racissi S, Hidalgo IJ, Scherman D: Polarized transport of docetaxel and vinblastine mediated by P-glycoprotcin in human intestinal epithelial cell monolayers. Biochem Pharmacol 48: 1528–1530, 1994

    Google Scholar 

  71. Richel DJ, Malingré MM, ten Bokkel Huinink WW, Rosing H. van Tellingen O, Swart M, Beijnen JH, Schellens JHM: Cyclosporin A strongly enhances the oral bioavallability of docetaxel in cancer patients. Proc Am Soc Clin Oncol 18: 201a, 1999

    Google Scholar 

  72. D'Incalci M, Farina P, Sessa C, Mangioni C, Conter V, Masera G, Rocchetti M, Pisoni MB, Piazza E, Beer M, Cavalli F: Pharmacokinetics of VP 16–213 given by different administration methods. Cancer Chemother Pharmacol 7: 141–145, 1982

    Google Scholar 

  73. Smyth RD, Pfeffer M, Scalzo A, Comis RL: Bioavailability and pharmacokinetics of etoposide (VP-16). Semin Oncol 12, Suppl 2: 48–51, 1985

    Google Scholar 

  74. Harvey VJ, Slevin ML, Joel SP, Smythe MM, Johnston A, Wrigley PFM: Variable bioavailability following repeated oral doses of etoposide. Eur J Cancer Clin Oncol 21: 1315–1319, 1985

    Google Scholar 

  75. Desoize B, Woirin V, Legros M, Coninx P. Reduced oral etoposide bioavailability in patients with advanced cancer of the head and neck. J Natl Cancer Inst 84: 348–350, 1992

    Google Scholar 

  76. Nguyen L, Chatelut E, Chevreau C, Tranchand B, Lochon I, Bachaud JM, Pujol A, Houin G, Bugat R, Canal P: Population pharmacokinetics of total and unbound etoposide. Cancer Chemother Pharmacol 41: 125–132, 1998

    Google Scholar 

  77. Harvey VJ, Slevin NIL, Joel SP, Johnston A, Wrigley PFM: The effect of dose on the bioavailability of oral etoposide. Cancer Chemother Pharmacol 16: 178–181, 1986

    Google Scholar 

  78. Slevin ML, Joel SP, Whomsley R, Devenport K, Harvey VJ, Osborne RJ, Wrigley PFM: The effect of dose on the bioavailability of oral etoposide: confirmation of a clinically relevant observation. Cancer Chemother Pharmacol 24: 329–331, 1989

    Google Scholar 

  79. Hande KR, Krozely MG, Greco FA, Hainsworth JD, Johnson DH: Bioavailability of low-dose oral etoposide. J Clin Oncol 11: 374–377, 1993

    Google Scholar 

  80. Greco FA: Chronic etoposide administration: overview of clinical experience. Cancer Treat Rev 19, Suppl C: 35–45, 1993

    Google Scholar 

  81. Lum BL, Kaubisch S, Yahanda AM, Adler KM, Jew L, Ehsan MN, Brophy NA, Halsey J, Gosland MP, Sikic BI: Alteration of etoposide pharmacokinetics and pharmacodynamics by cyclosporine in a phase I trial to modulate multidrug resistance. J Clin Oncol 10: 1635–1642, 1992

    Google Scholar 

  82. Keller RP, Altermatt HJ, Donatsch P, Zihlmann H, Laissue JA, Hiestand PC: Pharmacologic interactions between the resistance-modifying cyclosporine SDZ PSC 833 and etoposide (VP 16–213) enhance in vivo cytostatic activity and toxicity. Int J Cancer 51: 433–438, 1992

    Google Scholar 

  83. Leu BL, Huang JD: Inhibition of intestinal P-glycoprotein and effects on etoposide absorption. Cancer Chemother Pharmacol 35: 432–436, 1995

    Google Scholar 

  84. Kobayashi K, Ratain MJ, Fleming GF, Vogelzang NJ, Cooper N, Sun BL: A phase I study of CYP3A4 modulation of oral etoposide with ketoconazoleconazol in patients with advanced cancer. Proc Am Soc Clin Oncol 15: 471, 1996

    Google Scholar 

  85. Shepard DR, Kobayashi K, Wang C, Ratain MJ: Population pharmacokinetic determination of the modulation of oral etoposide (VP-16) elimination by ketoconazole. Proc Am Soc Clin Oncol 17: 190a, 1998

    Google Scholar 

  86. Siegsmund MJ, Cardarelli C, Aksentijevich I, Sugimoto Y, Pastan I, Gottesman MM: Ketoconazole effectively reverses multidrug resistance in highly resistant KB cells. J Urol 151: 485–491, 1994

    Google Scholar 

  87. Stewart DJ, Grewaal D, Green RM, Verma S, Maroun JA, Redmond D, Robillard L, Gupta S: Bioavailability and pharmacology of oral idarubecin. Cancer Chermother Pharmacol 27: 308–314, 1991

    Google Scholar 

  88. Schleyer E, Kuhn S, Ruhrs H, Unterhalt M, Kaufmann CC, Kern W, Braess J, Straubel G, Hiddemann W: Oral idarubicin pharmacokinetics-correlation of trough level with idarubicin area under curve. Leukemia 10: 707–712, 1996

    Google Scholar 

  89. Damiani D, Michieli M, Michelutti A, Pea F, Baraldo M, Fanin R, Russo D, Furlanut M, Baccarani M: P170-related multidrug resistance. Enhancement of idarubicin content in leukemic cells with cyclosporin in vivo: a report of two cases. Leukemia 9: 1792–1795, 1995

    Google Scholar 

  90. Tolomeo M, Gancitano RA, Musso M, Porretto F, Perricone R, Abbadessa V, Cajozzo A: Comparative activity of idarubicin and idarubicinol in combination with cyclosporin A in multidrug-resistant leukemia cells. Cancer Chemother Pharmacol 39: 157–161, 1996

    Google Scholar 

  91. Tidefelt U, Prenkert M, Paul C: Comparison of idarubicin and daunorubicin and their main metabolites regarding intracellular uptake and effect on sensitive and multidrugresistant HL60 cells. Cancer Chemother Pharmacol 38: 476–480, 1996

    Google Scholar 

  92. Hegewisch-Becker S: MDR1 reversal: criteria for clinical trials designed to overcome the multidrug resistance phenotype. Leukemia 10, Suppl 3: S32-S38, 1996

    Google Scholar 

  93. Armand JP, Marty M: Navelbine: a new step in cancer therapy? Semin Oncol 2: 41–45, 1989

    Google Scholar 

  94. Zhou XJ, Bore P, Monjanel S, Sahnoun Z, Favre R, Durand A, Rahinani R: Pharmacokinctics of navelbine after oral administration in cancer patients. Cancer Chemother Pharmacol 29: 66–70, 1991

    Google Scholar 

  95. Ueda K, Cardarelli C, Gottesman MM, Pastan I: Expression of full-length DNA for the human MDR1 gene confers resistance to colchicine, doxorubicin and vinblastine. Proc Natl Acad Sci USA 84: 3004–3008, 1987

    Google Scholar 

  96. Meyers MB, Scotto KW, Sirotnak FM: P-glycoprotein content and mediation of vincristine efflux: correlation with the level of differentiation in luminal epithelium of mouse small intestine. Cancer Commun 3: 159–165, 1991

    Google Scholar 

  97. Zhou XJ, Zhou-Pan XR, Favre R, Rahmani R: Relative bioavailability of two oral formulations of navelbine in cancer patients. Biopharm Drug Dispos 15: 577–586, 1994

    Google Scholar 

  98. Lucas S, Donehower RC, Rowinsky EK, Trump DL, Weiner E,WarginWA, Hohneker JA: Absolute bioavailability (ABA) and pharmacokinetics of weekly navelbine (NVB) liquid filled soft gelatin capsules at full therapeutic doses in patients (pts) with solid tumors. Proc 7th NIC-EORTC Symposium on New Drugs in Cancer Therapy abstract 264, March 17–20, 1992

  99. van Tellingen O, Sips JHM, Beijnen JH, Bult A, Nooijen WJ: Pharmacology, bioanalysis and pharmacokinetics of the vinca alkaloids and semi-synthetic derivatives. Anticancer Res 12: 1699–1716, 1992

    Google Scholar 

  100. Schellens JHM, Creemers GJ, Beijnen JH, Rosing H, de Boer-Dennert M, McDonald M, Davies B, Verweij J: Bioavailability and pharmacokinetics of oral topotecan: a new topoisomerase I inhibitor. Br J Cancer 731: 1268–1271, 1996

    Google Scholar 

  101. Herben VMM, Schellens JH, ten Bokkel Huinink WW, Rosing H, van Zomeren DM, Batchelor FB, Beusenberg FB, Beijnen JH: The effect of food co-administration on the pharmacokinetics of topotecan gelatin capsules. Proc Am Soc Clin Oncol 17: 1999

  102. Hendricks CB, Rowinsky EK, Grochow LB, Donehower RC, Kaufmann SH: Effect of P-glycoprotein expression on the accumulation and cytotoxicity of topotecan (SK&F 104864), a new camptothecin analogue. Cancer Res 52: 2268–2278, 1992

    Google Scholar 

  103. Hoki Y, Fujimori A, Pommier Y: Differential cytotoxicity of clinically important camptothecin derivatives in Pglycoprotein-overexpressing cell lines. Cancer Chemother Pharmacol 40: 433–438, 1997

    Google Scholar 

  104. Sugiyarna Y, Kato Y, Chu XY: Multiplicity of biliary excretion mechanisms for the camptothecin derivative irinotecan (CPT-11), its metabolite SN-38, and its glucuronide: role of canalicular multispecific organic anion transporter and P-glycoprotein. Cancer Chemother Pharmacol 42, Suppl: S44–9, 1998

    Google Scholar 

  105. Jansen WJM, Hulscher TM, van Ark-Otte J, Giaccone G, Pinedo HM, Boven E: CPT-11 sensitivity in relation to the expression of P170-glycoprotein and multidrug resistanceassociated protein. Br J Cancer 77: 359–365, 1998

    Google Scholar 

  106. Diasio RB, Harris BE: Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet 16: 215–237, 1989

    Google Scholar 

  107. Finch RE, Bending MR, Lant AF: Plasma levels of 5-fluorouracil after oral and intravenous administration in cancer patients. Br J Clin Pharmacol 7: 613–617, 1979

    Google Scholar 

  108. Cohen JL, Irwin LE, Marshall GJ, Darvey H, Bateman JR: Clinical pharmacology of oral and intravenous 5-fluorouracil (NSC-19893). Cancer Chemother Rep 58: 723–731, 1974

    Google Scholar 

  109. Chirstophidis N, Vajda FJ, Lucas I, Drummer O, Moon WJ, Louis WJ: Fluorouracil therapy in patients with carcinoma of the large bowel: a pharmacokinetic comparison of various rates and routes of administration. Clin Pharmacokinet 3: 330–336, 1978

    Google Scholar 

  110. Naguib FN, el Kouni MH, Cha S: Enzymes of uracil catabolism in normal and neoplastic human tissues. Cancer Res 45: 5405–5412, 1985

    Google Scholar 

  111. Harris BE, Song R, Soong SJ, Diasio RB: Relationship between dihydropyrimidine dehydrogenase activity and plasma 5-fluorouracil levels with evidence for circadian variation of enzyme activity and plasma drug levels in cancer patients receiving 5-fluorouracil by protracted continuous infusion. Cancer Res 50: 197–201, 1990

    Google Scholar 

  112. Spector T, Harrington JA, Porter DJ: 5-Ethynyluracil (776C85): inactivation of dihydropyrimidine dehydrogenase in vivo. Biochem Pharmacol 46: 2243–2248, 1993

    Google Scholar 

  113. Baccanari DP, Davis ST, Knick VC, Spector T: 5-Ethynyluracil (776C85): a potent modulator of the pharmacokinetics and antitumor efficacy of 5-fluorouracil. Proc Natl Acad Sci USA 90: 11064–11068, 1993

    Google Scholar 

  114. Baker SD, Khor SP, Adjei AA, Doucette M, Spector T, Donehower RC, Grochow LB, Sartorius SE, Noe DA, Hohneker JA, Rowinsky EK: Pharmacokinetic, oral bioavailability, and safety study of fluorouracil in patients treated with 776C85, an inactivator of dihydropyrimidine dehydrogenase. J Clin Oncol 14: 3085–3096, 1996

    Google Scholar 

  115. Pazdur R, Hoff PM, Medgyesy D, Royce M, Brito R: The oral fluorouracil prodrugs. Oncology (Huntingt) 12, Suppl 7: 48–51, 1998

    Google Scholar 

  116. Anttila MI, Sotaniemi EA, Kairaluoma MI, Mokka RE, Sundquist HT: Pharmacokinetics of ftorafur after intravenous and oral administration. Cancer Chemother Pharmacol 10: 150–153, 1983

    Google Scholar 

  117. Fukushima M, Shimamoto Y, Kato T, Uchida J, Yonekura R, Ohshimo H, Shirasaka T: Anticancer activity and toxicity of S-1, an oral combination of tegafur and two biochemical modulators, compared with continuous i.v. infusion of 5-fluorouracil. Anticancer Drugs 9: 817–823, 1998

    Google Scholar 

  118. Kono A, Hara Y, Sugata S, Karube Y, Matsushima Y, Ishitsuka H: Activation of 50deoxy-5-fluorouridine by thymidine phosphorylase in human tumors. Chem Pharm Bull (Tokyo) 31: 175–178, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardelmeijer, H.A., van Tellingen, O., Schellens, J.H. et al. The Oral Route for the Administration of Cytotoxic Drugs: Strategies to Increase the Efficiency and Consistency of Drug Delivery. Invest New Drugs 18, 231–241 (2000). https://doi.org/10.1023/A:1006469621561

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006469621561

Navigation