Skip to main content
Log in

Promising Approaches in Acute Leukemia

  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

In the last few decades, there has been a significant improvement in theprognosis of patients with acute leukemias. Still, the majority ofpatients succumb to these diseases. In recent years there has been a greatsurge in the understanding of the molecular mechanisms of disease whichhave provided us with new targets for anti-leukemia therapy. These rangefrom chemotherapeutic agents with novel mechanisms of action, such astopoisomerase I inhibitors or demethylating agents, to reversal ofdrug-resistance mechanisms, to monoclonal antibodies directed againstspecific antigens, and targeted therapy that inhibit the function ofmolecules such as tyrosine kinases or Ras. The research on many of theseagents is still in the early phases, but these new approaches offer thepromise of finding a cure for the majority of patients with leukemia inthe near future. Here we describe some of the promising approaches thatare currently being investigated in the treatment of acute leukemias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Estey EH: Treatment of acute myelogenous leukemia and myelodysplastic syndromes. Semin Hematol 32: 132-151, 1995

    Google Scholar 

  2. Rowe JM, Liesveld JL: Treatment and prognostic factors in acute myeloid leukemia. Baillieres Clin Hematol 9: 87-105, 1996

    Google Scholar 

  3. Cortes J, Kantarjian HM: Acute lymphoblastic leukemia. A comprehensive review with emphasis on biology and therapy. Cancer 76: 2393-2417, 1995

    Google Scholar 

  4. Copelan EA, McGuire EA: The biology and treatment of acute lymphoblastic leukemia in adults. Blood 85: 1151-1168, 1995

    Google Scholar 

  5. Russell NH: Biology of acute leukemia. Lancet 349: 118-122, 1997

    Google Scholar 

  6. Spriggs DR, Stopa E, Mayer RJ, Schoene W, Kufe DW: Fludarabine phosphate (NSC 312878) infusions for the treatment of acute leukemia: phase I and neuropathological study. Cancer Res 46: 5953-5958, 1986

    Google Scholar 

  7. Warrell RP Jr, Berman E: Phase I and II study of fludarabine phosphate in leukemia: therapeutic efficacy with delayed central nervous system toxicity. J Clin Oncol 4: 74-79, 1986

    Google Scholar 

  8. Gandhi V, Kemena A, Keating, MJ, Plunkett W: Fludarabine infusion potentiates arabinosylcytosine metabolism in lymphocytes of patients with chronic lymphocytic leukemia. Cancer Res 52: 897-903, 1992

    Google Scholar 

  9. Gandhi V, Estey E, Keating MJ, Plunkett W: Fludarabine potentiates metabolism of cytarabine in patients with acute myelogenous leukemia during therapy. J Clin Oncol 11: 116-124, 1993

    Google Scholar 

  10. Estey E, Plunkett W, Gandhi V, Rios MB, Kantarjian H, Keating MJ: Fludarabine and arabinasylcytosine therapy of refractory and relapsed acute myelogenous leukemia. Leukemia Lymphoma 9: 343-350, 1993

    Google Scholar 

  11. Estey E, Thall P, Andreeff M, Beran M, Kantarjian H, O'Brien S, Escudier S, Robertson LE, Koller C, Kornblau S, Pierce S, Freireich EJ, Deisseroth A, Keating M: Use of granulocyte colony-stimulating factor before, during, and after fludarabine plus cytarabine induction therapy of newly diagnosed acute myelogenous leukemia or myelndysplastic syndromes: comparison with fludarabine plus cytarabine without granulocyte colony-stimulating factor. J Clin Oncol 12: 671-678, 1994

    Google Scholar 

  12. Visani G, Tosi P, Zinzani PL, Manfroi S, Ottaviani E, Testoni N, Clavio M, Cenacchi A, Gamberi B, Carrara P: FLAG (fludarabine + high-dose cytarabine + G-CSF): an effective and tolerable protocol for the treatment of “poor risk” acute myeloid leukemias. Leukemia 8: 1842-1846, 1994

    Google Scholar 

  13. Huhmann IM, Watzke HH, Geissler K, Gisslinger H, Lager U, Knobl P, Pabinger I, Korninger L, Mannhalter C, Mitterbauer G, Schwarzinger I, Kalhs P, Haas OA, Lechner K: FLAG (fludarabine, cytosine arabinoside, G-CSF) for refractory and relapsed acute myeloid leukemia. Ann Hematol 73: 265-271, 1996

    Google Scholar 

  14. Parker JE, Cullis JO, Mijovic A, Pagliuca A, Mufti GJ: Idarubicin, fludarabine, cytarabine and G-CSF (FLAG-IDA) for the treatment of high risk myeloid malignancies. Blood 88 (Suppl 1): 454a (Abstract # 1803), 1996

    Google Scholar 

  15. Santana VM, Mirro J, Kearns C, Schell MJ, Crom W, Blakley RL: 2-chlorodeoxyadenosine produces a high rate of complete hematologic remission in relapsed acute myeloid leukemia. J Clin Oncol 10: 364-370, 1992

    Google Scholar 

  16. Santana VM, Hunvitz CA, Blakley RL, Crom WR, Luo X, Roberts WM, Ribeiro R, Mahmoud H, Krance RA: Complete hematologic remissions induced by 2-chlorodeoxyadenosine in children with newly diagnosed acute myeloid leukemia. Blood 84: 1237-1242, 1994

    Google Scholar 

  17. Vahdat L, Wong ET, Wile MJ, Rosemblum M, Foley KM, Warrell RP Jr: Therapeutic and neurotoxic effects of 2-chlorodeoxyadenosine in adults with acute myeloid leukemia. Blood 84: 3429-3434, 1994

    Google Scholar 

  18. Kornblau SM, Gandhi V, Andreeff HM, Beran M, Kantarjian HM, Koller CA, O'Brien S, Plunkett W, Estey E: Clinical and laboratory studies of 2-chlorodeoxyadenosine ± cytosine arabinoside for relapsed or refractory acute myelogenous leukemia in adults. Leukemia 10: 1563-1569, 1996

    Google Scholar 

  19. Gandhi V, Estey E, Keating MJ, Chucrallah A, Plunkett W: Chlorodeoxyadenosine and arabinosylcytosine in patients with acute myelogenous leukemia: pharmacokinetic, pharmacodynamic, and molecular interactions. Blood 87: 256-264, 1996

    Google Scholar 

  20. Xie C, Plunkett W: Metabolism and actions of 2-chloro-9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-adenine in human lymphoblastoid cells. Cancer Res 55: 2847-2852, 1995

    Google Scholar 

  21. Shewach DS, Daddona PE, Ashcraft E, Mitchell BS: Metabolism and selective cytotoxicity of 9-beta-Darabinofuranosylguanine in human lymphoblasts. Cancer Res 45: 1008-1014, 1985

    Google Scholar 

  22. Gandhi V, Plunkett W, Rodriguez CO, Nowak BJ, Du M, Ayres M, Kisor DF, Mitchell BS, Kurtzberg J, Keating MJ: Compound GW506U78 in refractory hematologic malignancies: relationship between cellular pharmacokinetics and clinical response. J Clin Oncol 16: 3607-3615, 1998

    Google Scholar 

  23. Kurtzberg J, Keating M, Moore JO, Gandhi V, Blaney S, Gold S, Ernst T, Henslee-Downey J, Chang A, Kisor D, Plunkett W, Mitchell B: 2-amino-9-B-D-arabinosyl-6-methoxy-9H-guanine (GW 506U; compound 506U) is highly active in patients with T-cell malignancies: results of a phase I trial in pediatric and adult patients with refractory hematological malignancies. Blood 88 (Suppl 1): 669a (Abstract #2666), 1996

    Google Scholar 

  24. Aguayo A, Cortes JE, Kantarjian HM, Beran M, Gandhi V, Plunkett W, Kurtzberg J, Keating MJ: Complete hematologic and cytogenetic response to 2-amino-9-β-D-arabinosyl-6-methoxy-9H-guanine in a patient with chronic myelogenous leukemia in T-cell blastic phase. Cancer 85: 58-64, 1999

    Google Scholar 

  25. O'Brien S, Thomas D, Kantarjian H, Freireich E, Koller C, Cortes J, Giles F, Bivens C, Lerner S, Keating M, Hodge J, Spector N: Compound 506 has activity in mature lymphoid leukemia. Blood 92 (Suppl 1): 490a, 1998

    Google Scholar 

  26. Tricot G, Weber G: Biochemically targeted therapy of refractory leukemia and myeloid blast crisis of chronic granulocytic leukemia with Tiazofurin, a selective blocker of inosine 5′-phosphate dehydrogenase activity. Anticancer Res 16: 3341-3347, 1996

    Google Scholar 

  27. Pinkel D: Intravenous mercaptopurine: life begins at 40. J Clin Oncol 11: 1826-1831, 1993

    Google Scholar 

  28. Koren G, Ferrazini G, Sulh H, Langevin AM, Kapelushnik J, Klein J, Giesbrecht E, Soldin S, Greenberg M: Systemic exposure to mercaptopurine as a prognostic factor in acute lymphocytic leukemia in children. N Engl J Med 323: 17-21, 1990

    Google Scholar 

  29. Lennard L, Lilleyman JS: Variable mercaptopurine metabolism and treatment outcome in childhood lymphoblastic leukemia. J Clin Oncol 7: 1816-1823, 1989

    Google Scholar 

  30. Schmiegelow K, Schrøder H, Gustafsson G, Kristinsson J, Glomstein A, Salmi T, Wranne L: Risk of relapse in childhood acute lymphoblastic leukemia is related to RBC methotrexate and mercaptopurine metabolites during maintenance chemotherapy. J Clin Oncol 13: 345-351, 1995

    Google Scholar 

  31. Evans WE, Crom WR, Abromowitch M, Dodge R, Look AT, Bowmen WP, George SL, Pui CH: Clinical pharmacodynamics of high-dose methotrexate in acute lymphocytic leukemia. Identification of a relation between concentration and effect. N Engl J Med 314: 471-477, 1986

    Google Scholar 

  32. Camitta B, Leventhal B, Lauer S, Shuster JJ, Adair S, Casper J, Civin C: Intermediate-dose intravenous methotrexate and mercaptopurine theraphy for non-T, non-B acute lymphocytic leukemia of childhood: a pediatric oncology group study. J Clin Oncol 10: 1539-1544, 1989

    Google Scholar 

  33. Camitta B, Mahoney D, Leventhal B, Lauer SJ, Shuster JJ, Adair S, Civin C, Munoz L, Steuber P, Strother D: Intensive intravenous methotrexate and mercaptopurine treatment of higher-risk non-T, non-B acute lymphocytic leukemia: a Pediatric Oncology Group study. J Clin Oncol 12: 1383-1389, 1994

    Google Scholar 

  34. Mahoney DH, Shuster J, Nitschke R, Lauer SJ, Winick N, Steuber CP, Camitta B: Intermediate-dose intravenous methotrexate with intravenous mercaptopurine is superior to repetitive low-dose oral methotrexate with intravenous mercaptopurine for children with lower-risk B-lineage acute lymphoblastic leukemia: a Pediatric Oncology Group Phase III Trial. J Clin Oncol 16: 246-254, 1998

    Google Scholar 

  35. Kantarjian H, O'Brien S, Keating MJ, Cortes J, Giles FJ, Beran M, Koller C, Andreeff M, Konblau S, Pierce S, Murphy S, Freireich EJ: Update of the Hyper-CVAD dose-intensive regimen in adult acute lymphoblastic leukemia. Blood 92 (Suppl 1): 313a (Abstract 1285), 1998

    Google Scholar 

  36. Ramilo-Torno LV, Avramis VI: Intracellular pharmacodynamic studies of the synergistic combination of 6-mercaptopurine and cytosine arabinoside in human leukemia cell lines. Cancer Chemother Pharmacol 35: 191-199, 1995

    Google Scholar 

  37. Lockhart S, Plunkett W, Jeha S, Ramirez I, Zipf T, Cork A, Pinkel D: High-dose mercaptopurine followed by intermediate-dose cytarabine in relapsed acute leukemia. J Clin Oncol 12: 587-595, 1994

    Google Scholar 

  38. Canpolat C, Jeha S, Lockhart S, Ramirez I, Zipf T, Pinkel D: High-dose mercaptopurine and intermediate-dose cytarabine during first remission of acute myeloid leukemia. Cancer Invest 15: 121-126, 1997

    Google Scholar 

  39. Morrison FS, Kopecky KJ, Head DR, Athens JW, Balcerzak SP, Gumbart C, Dabich L, Costanzi JJ, Coltman CA, Saiki JH: Late intensification with POMP chemotherapy prolongs survival in acute myelogenous leukemia. Results of a Southwest Oncology Group study of rubidazone versus adriamycin for remission induction, prophylactic intrathecal therapy, late intensification, and levamisole maintenance. Leukemia 6: 708-714, 1992

    Google Scholar 

  40. Lennard L, Lilleyman JS, Von Loon J, Weinshilboum RM: Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukemia. Lancet 336: 225-229, 1990

    Google Scholar 

  41. Adamson PC, Poplack DG, Balis FM: The cytotoxicity of thioguanine versus mercaptopurine in acute lymphoblastic leukemia. Leuk Res 18: 805-810, 1994

    Google Scholar 

  42. Kitchen BJ, Balls FM, Poplack DG, O'Brien M, Craig CE, Adamson PC: A pediatric phase I trial and pharmacokinetic study of thioguanine administered by continuous IV infusion. Clin Cancer Res 3: 713-717, 1997

    Google Scholar 

  43. Issa J-PJ, Zehnbauer BA, Kaufmann SH, Biel MA, Baylin SE: HIC1 hypermethylation is a late event in hematopoietic neoplasms. Cancer Res 57: 1678-1681, 1997

    Google Scholar 

  44. Steuber CP, Krischer J, Holbrook T, Camitta B, Land V, Sexauer C, Mahoney D, Weinstein H: Therapy of refractory or recurrent childhood acute myeloid leukemia using amsacrine and etoposide with or without azacitidine: a Pediatric Oncology Group randomized phase II study. J Clin Oncol 14: 1521-1525, 1996

    Google Scholar 

  45. Wang C, McCulloch EA: Sensitivity to 5-azacytidine of blast progenitors in acute myeloblastic leukemia. Blood 69: 553-559, 1987

    Google Scholar 

  46. Case DC Jr: 5-azacytidine in refractory acute leukemia. Oncology 39: 218-221, 1982

    Google Scholar 

  47. Silverman LR, Holland JF, Weinberg RS, Alter BP, Davis RB, Ellison RR, Demakos EP, Cornell CJ Jr, Carey RW, Schiffer C, Frei E, McIntyre OR: Effects of treatment with 5-azacytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes. Leukemia 7 (Suppl 1): 21-29, 1993

  48. Momparler RL, Gyger M, Rivard GE: Clinical trial on 5-aza-2′-deoxycytidine therapy in patients with acute leukemia. Pharmacol Ther 30: 277-286, 1985

    Google Scholar 

  49. Debusscher L, Marie JP, Dodion P, Blanc GM, Arrigo C, Zittoun R, Stryckmans P: Phase I-II trial of 5-aza-2′-deoxycytidine in adult patients with acute leukemia. In: Momparler RL, De Vos D (eds): 5-aza-2′-deoxycytidine: preclinical and clinical studies. PCH, Haarlem, Netherlands, pp: 131-142, 1990

    Google Scholar 

  50. Willemze R, Suciu S, Archimbaud E, Muus P, Stryckmans P, Louwagie EA, Berneman Z, Tjean M, Wijermans P, Dohner H, Jehn U, Labar B, Jaksic B, Dardenne M, Zittoun R: A randomized phase II study on the effects of 5-aza-2′-deoxycytidine combined with either amsacrine or idarubicin in patients with relapsed acute leukemia: an EORTC Leukemia Cooperative Group phase II study (06893). Leukemia 11 (Suppl 1): S24-S27, 1997

    Google Scholar 

  51. Pinto A, Zagonel V: 5-aza-2′-deoxycytidine (decitabine) and 5-azacytidine in the treatment of acute myeloid leukemias and myelodysplastic syndromes: past, present, and future trends. Leukemia 7 (Suppl 1): 51-60, 1993

    Google Scholar 

  52. Schwartsmann G, Fernandes MS, Schaan MD, Moschen M, Gerhardt LM, Di Leone L, Loitzembauer B, Kalakun L: Decitabine (5-aza-2′-deoxycytidine; DAC) plus daunorubicin as a first line treatment in patients with acute myeloid leukemia: preliminary observations. Leukemia 11 (Suppl 1): S28-S31, 1997

    Google Scholar 

  53. Wijermans PW, Krulder JW, Huijgens PC, Neve P: Continuous infusion low-dose 5-Aza-2′-deoxycytidine in elderly patients with high-risk myelodysplastic syndrome. Leukemia 11: 1-5, 1997

    Google Scholar 

  54. Giralt S, Davis M, O'Brien S, van Besien K, Champlin R, de Vos D, Kantarjian H: Studies of decitabine with allogeneic progenitor cell transplantation. Leukemia 11 (Suppl 1): S32-S34, 1997

    Google Scholar 

  55. Kantajian HM, O'Brien SM, Keating M, Beran M, Estey E, Giralt S, Kornblau S, Rios MB, de Vos D, Talpaz M: Results of decitabine therapy in the accelerated and blastic phases of chronic myelogenous leukemia. Leukemia 11: 1617-1620, 1997

    Google Scholar 

  56. Anzai H, Frost P, Abbruzzese JL: Synergistic cytotoxicity with 2′-deoxy-5-azacytidine and topotecan in vitro and in vivo. Cancer Res 52: 2180-2185, 1992

    Google Scholar 

  57. Surbone A, Ford H Jr, Kelley JA, Ben-Baruch N, Thomas RV, Fine R, Cowan KH: Phase I and pharmacokinetic study of arabinofuranosyl-5-azacytosine (fazarabine, NSC 281272). Cancer Res 50: 1220-1225, 1990

    Google Scholar 

  58. Hertel LW, Boder GB, Kroin JS, Rinzel SM, Poore GA, Todd GC, Grindey GB: Evaluation of the antitumor activity of gemcitabine (2′,2′-difluoro-2′-deoxycytidine). Cancer Res 50: 4417-4422, 1990

    Google Scholar 

  59. Cory AH, Hertel LW, Kroin JS, Cory JG: Effects of 2′,2′-difluoro deoxycytidine (Gemcitabine) on wild type and variant mouse leukemia L1210 cells. Oncol Res 5: 59-63, 1993

    Google Scholar 

  60. Huang P, Plunkett W: Induction of apoptosis by gemcitabine. Semin Oncol 22 (4 Suppl 11): 19-25, 1995

    Google Scholar 

  61. Grunewald R, Kantarjian H, Keating MJ, Abbruzzese J, Tarassoff P, Plunkett W: Pharmacologically directed design of the dose rate and schedule of 2′,2′difluorodeoxycytidine (Gemcitabine) administration in leukemia. Cancer Res 50: 6823-6826, 1990

    Google Scholar 

  62. Grunewald R Kantarjian H, Du M, Faucher K, Tarassoff P, Plunkett W: Gemcitabine and leukemia: a phase I clinical, plasma, and cellular pharmacology study. J Clin Oncol 10: 406-413, 1992

    Google Scholar 

  63. Gandhi V, Plunkett W: Modulatory activity of 2′,2′-difluorodeoxycytidine on the phosphorylation and cytotoxicity of arabinosyl nucleosides. Cancer Res 50: 3675-3680, 1990

    Google Scholar 

  64. Santini V, D'Ippolito G, Bernabei PA, Zoccolante A, Ermini A, Possi-Ferrini P: Effects of fludarabine and gemcitabine on human acute myeloid leukemia cell line HL 60: direct comparison of cytotoxicity and cellular Ara-C uptake enhancement. Leukemia Res 20: 37-45, 1996

    Google Scholar 

  65. Husain I, Mohler JL, Seigler HF, Besterman JM: Elevation of topoisomerase I messenger RNA, protein, and catalytic activity in human tumors: demonstration of tumor-type specificity and implications for cancer chemotherapy. Cancer Res 54: 539-546, 1994

    Google Scholar 

  66. Liu LF: DNA topoisomerase poisons as antitumor drugs. Ann Rev Biochem 58: 351-375, 1989

    Google Scholar 

  67. Giovanella BC, Stehlin JS, Wall ME, Wani MC, Nicholas AW, Liu LF, Silber R, Potmesil M: DNA topoisomerase Itargeted chemotherapy of human colon cancer xenografts. Science 246: 1046-1048, 1989

    Google Scholar 

  68. Kantarjian HM, Beran M, Ellis A, Zwelling L, O'Brien S, Cazenave L, Koller C, Rios MB, Plunkett W, Keating JM, Estey EH: Phase I study oftopotecan, a new topoisomerase I inhibitor, in patients with refractory or relapsed acute leukemia. Blood 81: 1146-1151, 1993

    Google Scholar 

  69. Rowinsky EK, Adjei A, Donehower RC, Gore SD, Jones RJ, Burke PJ, Cheng Y-C: Gorchow LB, Kaufman SH: Phase I and pharmacodynamic study of the topoisomerase I inhibitor topotecan in patients with refractory acute leukemia. J Clin Oncol 12: 2193-2203, 1994

    Google Scholar 

  70. Beran M, Kantarjian H, O'Brien S, Koller C, Albitar M, Arbuck S, Pierce S, Moore M, Abbruzzese JL, Andreeff M, Keating M, Estey E: Topotecan, a topoisomerase I inhibitor, is active in the treatment of myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 88: 2473-2479, 1996

    Google Scholar 

  71. Crump M, Lipton J, Hedley D, Stewart AK, Sutton D, Keating A, Minden M, Messner H, Eisenhauer E: A phase I trial of sequential topotecan and etoposide in adult acute myeloid leukemia. Blood 88 (Suppl 1): 220a (Abstract #867), 1996

    Google Scholar 

  72. Seiter K, Feldman EJ, Halicka HD, Traganos F, Darzynkiewicz Z, Lake D, Ahmed T: Phase I clinical and laboratory evaluation of topotecan and cytarabine in patients with acute leukemia. J Clin Oncol 15: 44-51, 1997

    Google Scholar 

  73. Beran M, Estey EH, O'Brien S, Cortes J, Koller CA, Giles FJ, Kornblau S, Andreeff M, Vey N, Pierce SR, Hayes K, Wong GC, Keating M, Kantarjian H: Topotecan and cytarabine is an active combination regimen in myelodysplastic syndromes and chronic myelomonocytic leukemia. J Clin Oncol (in press), 1999

  74. Boothman DA, Wang M, Schea RA, Burrows HL, Strickfaden S, Owens JK: Posttreatment exposure to camptothecin enhances the lethal effects of x-rays on radioresistant human malignant melanoma cells. Int J Radiat Oncol Biol Phys 24(5): 939-948, 1992

    Google Scholar 

  75. Kano Y, Suzuki K, Akutsu M, Suda K, Inoue Y, Yoshida M, et al.: Effects of CPT-11 in combination with other anti-cancer agents in culture. Int J Cancer 50(4): 604-610, 1992

    Google Scholar 

  76. Cortes J, Estey E, Beran M, O'Brien S, Giles F, Koller C, Keating M, Kantarjian: Cyclophosphamide, ara-C, and topotecan (CAT) for patients with refractory or relapsed acute leukemia. Leukemia Lymphoma (in press), 1999

  77. Gerrits CJH, Schellens JHM, Burris H, Eckardt JR, Planting AST, van der Burg MEL, Rodriguez GI, Loos WJ, van Beurden V, Hudson I, von Hoff DD, Venveij J: A comparison of clinical pharmacodynamics of different administration schedules of oral topotecan (Hycamtin). Clin Cancer Res 5: 69-75, 1999

    Google Scholar 

  78. Armand JP: CPT-11: clinical experience in phase I studies. Semin Oncol 23 (Suppl 1): 27-33, 1996

    Google Scholar 

  79. Ohno R, Okada K, Masaoka T, Kuramoto A, Arima T, Yoshida Y, Ariyoshi H, Ichimaru M, Sakai Y, Oguro M: An early phase II study of CPT-11: a new derivative of camptothecin, for the treatment of leukemia and lymphoma. J Clin Oncol 8: 1907-1912, 1990

    Google Scholar 

  80. Kantarjian H, Cortes J, O'Brien S, Verschraegen CF, Giovanella BC, Cao Z, Stehlin JS: 9-nitro-20-(S)-camptothecin (9-NC, RFS 2000): an effective agent for treatment of chronic myelomonocytic leukemia and Philadelphia chromosome-negative chronic myelogenous leukemia. Proc ASCO 1999

  81. Huang MT: Harringtonine, an inhibitor of initiation of protein biosynthesis. Mol Pharmacol 11: 511-519, 1975

    Google Scholar 

  82. Boyd AW, Sullivan JR: Leukemic cell differentiation in vivo and in vitro: arrest of proliferation parallels the differentiation induced by the antileukemic drug Harringtonine. Blood 63: 384-392, 1984

    Google Scholar 

  83. Changliang H, Mingliang D, Renjie G, Mingtang W, Fengzhu L, Yingming L, Qingda Q: A study of the induction of differentiation of human leukemic cells by harringtonine combined with cytarabine. Leukemia 2: 518-522, 1988

    Google Scholar 

  84. Chinese People's Liberation Army 187th Hospital: Harringtonine in acute leukemia: Clinical analysis of 31 cases. Chin Med J 3: 319-324, 1977

    Google Scholar 

  85. Chinese People's Liberation Army 187th Hospital: Harringtonine in the treatment of acute leukemia: Clinical analyses of 72 cases. Chin Med J 3: 163, 1978

    Google Scholar 

  86. Hematology Research Division and Hematology Section of the Children's Hospital, Suzhou Medical College. High remission-induction (traditional sine-Western) HOAP) regimen for acute nonlympholeukemia. Chin Med J 93: 565-568, 1980

    Google Scholar 

  87. Zhang ZY, Hou CH, Zhu YF, You XY, Li JL, Fu Z: Curative effect of harringtonine semisynthetic harringtonine and HOAP on nonlymphocytic leukemias. Analysis of 304 cases. Chin Med J 100: 565-568, 1987

    Google Scholar 

  88. Legha SS, Keating M, Picket S, Ajani JA, Ewer M, Bodey GP: Phase I clinical investigation ofhomoharringtonine. Cancer Treat Rep 68: 1085-1091, 1984

    Google Scholar 

  89. Stewart JA, Krakoff IH: Homoharringtonine: a phase I evaluation. Invest New Drugs 3: 279-286, 1985

    Google Scholar 

  90. Coonley CJ, Warrell RP, Young CW: Phase I trial of homoharringtonine administered as a 5-day continuous infusion. Cancer Treat Rep 67: 693-696, 1983

    Google Scholar 

  91. Neidhart JA, Young DC, Kraut E, Howinstein B, Metz EN: Phase I trial of homoharringtonine administered by prolonged continuous infusion. Cancer Res 46: 967-969, 1986

    Google Scholar 

  92. Warrell RP, Coonley CJ, Gee TS: Homoharringtonine: an effective new drug for remission induction in refractory nonlymphoblastic leukemia. J Clin Oncol 3: 617-621, 1985

    Google Scholar 

  93. Feldman E, Arlin Z, Ahmed T, Mittelman A, Puccio C, Chun Y Cook P, Baskind P: Homoharringtonine is safe and effective for patients with acute myelogenous leukemia. Leukemia 6: 1185-1188, 1992

    Google Scholar 

  94. Stewart JA, Cassileth PA, Bennett JM, O'Connell MJ: Continuous infusion homoharringtonine (NSC 141633) in refractory acute nonlymphacytic leukemia. Am J Clin Oncol 11: 627-629, 1988

    Google Scholar 

  95. Kantarjian HM, Keating MJ, Walters RS, Koller CA, McCredie KB, Freireich EJ: Phase II study of low-dose continuous infusion homoharringtonine in refractory acute myelogenous leukemia. Cancer 63: 813-817, 1989

    Google Scholar 

  96. Feldman EJ, Seiter KP, Ahmed T, Baskind P, Arlin ZA: Homoharringtonine in patients with myelodysplastic syndrome (MDS) and MDS evolcing to acute myeloid leukemia. Leukemia 10: 40-42, 1996

    Google Scholar 

  97. Feldman E, Arlin Z, Ahmed T, Mittelman A, Puccio C, Chun H, Cook P, Baskind P: Homoharringtonine in combination with cytarabine for patients with acute myelogenous leukemia. Leukemia 6: 1189-1191, 1992

    Google Scholar 

  98. Feldman E, Arlin Z, Ahmed T, Mittelman A, Ascensao JL, Puccio C, Coombe N, Baskind P: Acute promyelocytic leukemia: a 5-year experience with new antileukemic agents and a new approach at preventing fatal hemorrhage. Acta Hematol 82: 117-121, 1989

    Google Scholar 

  99. Jing-song Y, Xiao-hong W, Guang-hui F, Gui-ren L, Zhi-ping L: Small-dose harringtonine induces complete remission in patients with acute promyelocytic leukemia. Leukemia 2: 427-429, 1988

    Google Scholar 

  100. Takemura Y, Ohnuma T, Chou TC, Okano T, Holland IF: Biologic and pharmacologic effects of harringtonine on human leukemia-lymphoma cells. Cancer Chemother Pharmacol 14: 206-210, 1985

    Google Scholar 

  101. Broggini M, Coley HM, Mongelli N, Pesenti E, Wyatt MD, Hartley JA, D'Incalci: DNA sequence-specific adenine alkylation by the novel antitumor drug tallimustine (FCE24517), a benzoyl nitrogen mustard derivative of distamycin. Nucleic Acids Res 23: 81-87, 1995

    Google Scholar 

  102. Erba E, Mascellani E, Pifferi A, D'Incalci M: Comparison of cell-cycle phase perturbations induced by the DNA-minorgroove alkylator tallimustine and by melphalan in the SW626 cell line. Int J Cancer 62: 170-175, 1995

    Google Scholar 

  103. Ciomei M, Pastori W, Capolongo L, Geroni C, Melegaro G, Penella G, Grandi M: Decreased tyrosine phosphorilation in tumor cells resistant to FCE 24517 (Tallimustine). Br J Cancer 72: 1504-1508, 1995

    Google Scholar 

  104. Punt CJ, Humblet Y, Roca E, Dirix LY, Wainstein R, Polli A, Corradino I: Tallimustine in advanced previously untreated colorectal cancer, a phase II study. Br J Cancer 73: 803-804, 1996

    Google Scholar 

  105. Viallet J, Stewart D, Shepherd F, Ayoub J, Cormier Y, DiPietro N, Steward W: Tallimustine is inactive in patients with previously treated small cell lung cancer. A phase II trial of the National Cancer Institute of Canada Clinical Trials Group. Lung Cancer 15: 367-373, 1996

    Google Scholar 

  106. Sessa C, Pagani O, Zurlo MG, de Jong J, Hofmann C, Lassus M, Marrari P, Benedetti SM, Cavalli F: Phase I study of the novel distamycin derivative tallimustine (FCE 24517). Ann Oncol 5: 901-907, 1994

    Google Scholar 

  107. Beran M, Jeha S, O'Brien S, Estey E, Vitek L, Zurlo M, Rios MB, Keating M, Kantarjian H: Tallimustine, an effective antileukemic agent in a SCID mouse model of adult myelogenous leukemia induces remissions in a phase I study. Blood 88 (Suppl 1): 220a (Abs # 868), 1996

    Google Scholar 

  108. Yang L-Y, Li L, Keating MJ, Plunkett W: Arabinosyl-2-fluoroadenine augments cisplatin cytotoxicity and inhibits cisplatin-DNA cross-link repair. Mol Pharmacol 47: 1072-1079, 1995

    Google Scholar 

  109. Vogler WR, Harrington DP, Winton EF, Lazarus HM, Bennett JM, Cassileth PA, Oken NM: Phase II clinical trial of carboplatin in relapsed and refractory leukemia. Leukemia 6: 1072-1075, 1992

    Google Scholar 

  110. Welborn JL, Kopecky KJ, Meyers FJ, Veith R, Shurafa M, Doroshow JH, Balcerzak SP, Appelbaum FR: Carboplatin infusion in relapsed and refractory acute myeloid leukemia. A Southwest Oncology Group trial. Leukemia 9: 1126-1129, 1995

    Google Scholar 

  111. Kornblau SM, Andreeff M, Betari M, Estey E, Keating M, Koller C, O'Brien S, Kantajian H: CECA-Cyclophosphamide, etoposide, carboplatin, and cytosine arabinoside. A new salvage regimen for relapsed or refractory acute myelogenous leukemia. Blood 86 (Suppl 1): 514a (Abs # 2045), 1995

    Google Scholar 

  112. Fantl D, Nucitfora E, Viñuales S, Penchasky D, Arbelbide J, Iastrebner M, Dibar E, Makiva M, Tartas N: Infusion carboplatin and mitoxantrone treatment of relapsed and refractory acute leukemia. Blood 86 (Suppl 1): 758a (Abs # 3021), 1995

    Google Scholar 

  113. Spiers A, Saba H, Balducci L, Moscinski L, Richard J, Huegel V, Daniel P, Cosgrove D: The Cadet regimen (Carboplatin/ara-C/Daunorubicin/Etoposide/Thioguanine) in acute myeloid leukemia: results in standard risk patients. Blood 86 (Suppl 1): 781a (Abs # 3111), 1995

    Google Scholar 

  114. Larrea L, Martin G, Sanz GF, Martinez JA, Arnao M, Jarque I, Jimenez C, Sanz MA: Carboplatin plus cytarabine in the treatment of high-risk acute myeloblastic leukemia. Blood 88 (Suppl 1): 217a (Abs # 856), 1996

    Google Scholar 

  115. Lioure B, Moreau P, Witz F, Witz B, Vilque JP, Francois S, Brion A, Delain M, Casassus P, Ojeda M, Cahn JY, Oberling F, Harousseau JL: New association of high-dose mitoxantrone, carboplatin and VP16 as treatment for relapsed or refractory acute myelogenous leukemia. Blood 88 (Suppl 1): 215a (Abs # 848), 1996

    Google Scholar 

  116. Amadori S, Picardi A, Fazi P, Testi AM, Petti MC, Montefusco E, Mandelli F: A phase II study of VP-16, intermediatedose ara-C and carboplatin (VAC) in advanced acute myelogenous leukemia and blastic chronic myelogenous leukemia. Leukemia 10: 766-768, 1996

    Google Scholar 

  117. O'Brien S, Kantarjian H, Freireich E, Johnston D, Nguyen K, Beran M: CI-973, a new platinum derivative with potential antileukemic activity. Cancer Res 52: 4130-4134, 1992

    Google Scholar 

  118. Kantarjian HM, Beran M, O'Brien S, Robertson L, Siddik K, Yoshida M, Yang LY, Rios MB, Keating MJ, Meyer M: Evaluation of CI-973, a platinum analogue, in refractory or relapsed acute leukemia. Leukemia 10: 396-401, 1996

    Google Scholar 

  119. Demur C, Chiron M, Saivin S, Attal M, Dastugue N, Bousquet C, Galinier JL, Colombies P, Laurent L: Effect of melphalan against self-renewal capacity of leukemic progenitors in acute myeloblastic leukemia. Leukemia 6: 204-208, 1992

    Google Scholar 

  120. Tohda S, Nagata K, Suzuki T, Nara N: Comparative effects of busulfan, cytosine arabinoside and adriamycin on different maturation stages of normal human bone marrow cells. Acta Haematologica 83: 16-21, 1990

    Google Scholar 

  121. Kim S: Liposomes as carriers of cancer chemotherapy. Current status and future prospects. Drugs 46: 618-638, 1993

    Google Scholar 

  122. Guaglianone P, Chan K, DelaFlor-Weiss E, et al.: Phase I and pharmacologic study of liposomal daunorubicin (DaunoXome). Invest New Drugs 12: 103-110, 1994

    Google Scholar 

  123. Cohen P, Gill PS, Wernz J, et al.: Absence of cardiac toxicity in patients who received 600 mg/m2 of liposomal encapsulated daunorubicin (DaunoXome). Proc ASCO 16: 217a (Abs # 761), 1997

    Google Scholar 

  124. Cortes J, O'Brien S, Estey E, Giles F, Keating M, Kantarjian H: Phase I study of liposomal daunorubicin in patients with acute leukemia. Invest New Drugs 1999 (in press)

  125. Cortes J, Kantarjian H, O'Brien S, Giles FJ, Koller C, Beran M, Keating M, Estey E: High-dose liposomal Daunorubicin and ara-C for refractory or relapsed acute leukemias: a dose searching study. Blood 92 (Suppl 1): 234a (Abs # 957), 1998

    Google Scholar 

  126. Koller C, Cortes J, O'Brien S, Giles F, Keating M, Kantajian H. A pilot study of dose-intensive anthracyclines for acute lymphoblastic leukemia (ALL) using liposomal daunorubicin (LD) with hyperfractionated cyclophosphamide (CTX), vincristine (VCR), and prednisone (PDN) (HyperCVXD). Proc ASCO 17: 28a (Abs # 110), 1998

    Google Scholar 

  127. Gordon KB, Tajuddin A, Guitart J, Kuzel TM, Eramo LR, VonRoenn J: Hand-foot syndrome associated with liposome-encapsulated doxorubicin therapy. Cancer 75: 2169-2173, 1995

    Google Scholar 

  128. Vail DM, Chun R, Thamm DH, Garrett LD, Cooley AJ, Obradovich JE: Efficacy of pyridoxine to ameloriate the cutaneous toxicity associated with doxorubicin containing pegylated (Stealth) liposomes: a randomized, double-blind clinical trial using a canine model. Clin Cancer Res 4: 1567-1571, 1998

    Google Scholar 

  129. Mayer LD, Bally MB, Loughrey H, Masin D, Cullis PR: Liposomal vincristine preparations which exhibit decreased drug toxicity and increased activity against murine L1210 and P388 tumors. Cancer Res 50: 575-579, 1990

    Google Scholar 

  130. Mayer LD, Masin D, Nayar R, Boman NL, Bally MB: Pharmacology ofliposomal vincristine in mice bearing L1210 ascitic and B16/BL6 solid tumours. Br J Cancer 71: 482-488, 1995

    Google Scholar 

  131. Gelmon KA, Tolcher A, Diab AR, Bally MB, Embree L, Hudon N, Dedhar C, Ayers D, Eisen A, Melosky B, Burge C, Logan P, Mayer LD: Phase I study of liposomal vincristine. J Clin Oncol 17: 697-705, 1999

    Google Scholar 

  132. Subramanian D, Muller MT: Liposomal encapsulation increases the activity of the topoisomerase I inhibitor topotecan. Oncology Res 7: 461-469, 1995

    Google Scholar 

  133. Colbern GT, Dykes DJ, Engbers C, Musterer R, Hiller A, Pegg E, Saville R, Weng S, Luzzio M, Uster P, Amantea M, Working PK: Encapsulation of the topoisomerase I inhibitor GL147211C in pegylated (Stealth) liposomes: pharmacokinetics and antitumor activity in HT29 colon tumor xenografts. Clin Cancer Res 4: 3077-3082, 1998

    Google Scholar 

  134. Verfaillie CM, Miller JS: CD34+/CD33-cells reselected from macrophage inflammatory protein 1 alpha+interleukin-3-supplemented “stroma noncontact” cultures are highly enriched for long-term bone marrow culture initiating cells. Blood 84: 1442-1449, 1994

    Google Scholar 

  135. Scheinberg DA, Tanimoto M, McKenzie S, Strife A, Old LJ, Clarkson BD: Monoclonal antibody M195: a diagnostic marker for acute myelogenous leukemia. Leukemia 3: 440-445, 1989

    Google Scholar 

  136. Tanimoto M, Scheinberg DA, Cordon-Cardo C, Huie D, Clarkson ED, Old LJ: Restricted expression of an early myeloid and monocytoid cell surface antigen defined by monoclonal antibody M195. Leukemia 3: 339-348, 1989

    Google Scholar 

  137. Scheinberg DA, Lovett D, Divgi CR, Graham MC, Berman E, Pentlow K, Feirt N, Finn RD, Clarkson BD, Gee TS: A phase I trial of monoclonal antibody M195 in acute myelogenous leukemia: specific bone marrow targeting and internalization of radionuclide. J Clin Oncol 9: 478-490, 1991

    Google Scholar 

  138. Schwartz MA, Lovett DR, Redner A, Finn RD, Graham MC, Divgi CR, Dantis L, Gee TS, Andreeff M, Old LJ: Dose escalation trial of M195 labeled with iodine 131 fro cytoreduction and marrow ablation in relapsed or refractory myeloid leukemias. J Clin Oncol 11: 294-303, 1993

    Google Scholar 

  139. Caron PC, Co MS, Bull MK, Avdalovic NM, Queen C, Scheinberg DA: Biological and immunological features of humanized M195 (anti-CD33) monoclonal antibodies. Cancer Res 52: 6761-6767, 1992

    Google Scholar 

  140. Caron PC, Jurcic JG, Scott AM, Finn RD, Divgi CR, Graham MC, Jureidini IM, Sgouros G, Tyson D, Old LJ: A phase 1B trial of humanized monoclonal antibody M195 (anti-CD33) in myeloid leukemia: specific targeting without immunogenicity. Blood 83: 1760-1768, 1994

    Google Scholar 

  141. Jurcic JG, Caron PC, Miller WH Jr, Yao TJ, Maslak P, Finn RD, Larson SM, Warrell RP Jr, Scheinberg DA: Sequential targeted therapy for relapsed acute promyelocytic leukemia with all-trans retinoic acid and anti-CD33 monoclonal antibody M195. Leukemia 9: 244-248, 1995

    Google Scholar 

  142. Appelbaum FR, Matthews DC, Eary JF, Badger CC, Kellogg M, Press OW, Martin PJ, Fisher DR, Nelp WB, Thomas ED: The use of radiolabeled anti-CD33 antibody to augment marrow irradiation prior to marrow transplantation for acute myelogenous leukemia. Transplantation 54: 829-833, 1992

    Google Scholar 

  143. Stiff PJ, Schulz WC, Bishop M, Marks L: Anti-CD33 monoclonal antibody and etoposide/cytosine arabinoside combinations for the ex vive purification of bone marrow in acute nonlymphocytic leukemia. Blood 77: 355-362, 1991

    Google Scholar 

  144. Sievers EL, Larson RA, Estey E, Stadtmauer E, Berger M, Eten C, Bernstein E, Appelbaum F: Interim analysis of the efficacy and safety of CMA-676 in patients with AML in first relapse. Blood 92 (Suppl 1): 613a (Abs # 2527), 1998

    Google Scholar 

  145. McGraw KJ, Rosemblum MJ, Cheung L, Scheinberg DA: Characterization of murine and humanized anti-CD33, gelonin immunotoxins reactive against myeloid leukemias. Cancer Immunol Immunother 39: 367-374, 1994

    Google Scholar 

  146. Xu Y, Xu Q, Rosemblum MJ, Scheinberg DA: Antileukemic activity of recombinant humanized M195-gelonin immunotoxin in nude mice. Leukemia 10: 321-326, 1996

    Google Scholar 

  147. Silla LM, Chen J, Zhong RK, Whiteside TL, Ball ED: Potentiation of lysis of leukemia cells by a bispecific antibody to CD33 and CD16 (Fc gamma RIII) expressed by human natural killer (NK) cells. Br J Hematol 89: 712-718, 1995

    Google Scholar 

  148. Hale G. Xia MQ, Tighe HP, Dyer MJS, Waldmann H: The CAMPATH-1 antigen (Cdw52). Tissue Antigens 35: 118-127, 1990

    Google Scholar 

  149. Rowan WC, Hale G, Tite JP, Brett SJ: Cross-linking of the CAMPATH-1 antigen (CD52) triggers activation of normal human T lymphocytes. International Immunol 7: 69-77, 1995

    Google Scholar 

  150. Hale G, Swirsky D, Walsmann H, Chan LC: Reactivity of rat monoclonal antibody CAMPATH-1 with human leukemia cells and its possible application for autologous bone marrow transplantation. Br J Hematol 60: 41-48, 1985

    Google Scholar 

  151. Hale G, Bright S, Chumbley G, Hoang T, Metcalf D, Munro AJ, Waldmann H: Removal of T cells from bone marrow for transplantation: a monoclonal antilymphocyte antibody that fixes human complement. Blood 62: 873-872, 1983

    Google Scholar 

  152. Waldmann H, Polliak A, Hale G, Or R Cividalli G, Weiss L, Weshler Z, Samuel S, Manor D, Brautbar C: Elimination of graft-versus-host disease by in vitro depletion of alloreactive lymphocytes with a monoclonal rat anti-human lymphocyte antibody (CAMPATH-1). Lancet 2: 483-486, 1984

    Google Scholar 

  153. Hale G, Clark M, Waldmann H: Therapeutic potential of rat monoclonal antibodies: isotype specificity of antibodydependent cell-mediated cytotoxicity with human lymphocytes. J Immunol 134: 3056, 1985

    Google Scholar 

  154. Hale G, Dyer MJ, Clark MR, Phillips JM, Marcus R, Riechmann L, Winter G, Waldmann H: Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-1H. Lancet 2: 1394-1399, 1988

    Google Scholar 

  155. Dyer MJS, Hale G, Hayhoe FGJ, Walsmann H: Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood 73: 1431-1439, 1989

    Google Scholar 

  156. Osterborg A, Fassas AS, Anagnostopoulos A, Dyer MJS, Catovsky D, Mellstedt H: Humanized CD52 monoclonal antibody Campath-1H as first-line treatment in chronic lymphocytic leukemia. Br J Hematol 93: 151-153, 1996

    Google Scholar 

  157. Osterborg A, Dyer MJS, Bunjes D, Pangalis GA, Bastion Y, Catovsky D, Mellstedt H: Phase II multicenter study of human CD52 antibody in previosly treated chronic lymphocytic leukemia. J Clin Oncol 15: 1567-1574, 1997

    Google Scholar 

  158. Nadler LM, Anderson KC, Marti G, Bates MP, Park E, Daley JF, Schlossman SF: B4, a human B lymphocyte associated antigen expressed on normal, mitogen-activated, and malignant B lymphocytes. J Immunol 131: 244, 1983

    Google Scholar 

  159. Hooijberg E, Sein JJ, van den Berk PC, Hart AA, van der Valk MA, Kast WM, Melief CJ, Hekman A: Erradication of large human B cell tumors in nude mice with unconjugated CD20 monoclonal antibodies and interleukin 2. Cancer Res 55: 2627-2634, 1995

    Google Scholar 

  160. Hooijberg E, van den Berk PC, Sein JJ, Wijdenes J, Hart AA, de Boer RW, Melief CJ, Hekman A: Enhanced antitumor effects of CD20 over CD19 monoclonal antibodies in a nude mouse xenograft model. Cancer Res 55: 840-846, 1995

    Google Scholar 

  161. Lambert JM, Goldmacher VS, Collinson AR, Nadler LM, Blattler WA: An immunotoxin prepared with blocked ricin: a natural plant toxin adapted for therapeutic use. Cancer Res 51: 6236-6242, 1991

    Google Scholar 

  162. Shah SA, Halloran PM, Ferris CA, Levine BA, Bourret LA, Goldmacher VS, Blattler WA: Anti-B4-blocked ricin immunotoxin shows therapeutic efficacy in four different SCID mouse tumor models. Cancer Res 53: 1360-1367, 1993

    Google Scholar 

  163. Grossbard ML, Lambert JM, Goldmacher VS, Spector NL, Kinsella J, Eliseo L, Coral F, Taylor JA, Blattler WA, Epstein CL, Nadler LM: Anti-B4-blocked ricin: a phase I trial of 7-day continuous infusion in patients with B-cell neoplasms. J Clin Oncol 11: 726-737, 1993

    Google Scholar 

  164. Grossbard ML, Freedman AS, Ritz J, Coral F, Goldmacher VS, Eliseo L, Spector N, Dear K, Lambert JM, Blattler WA, Taylor JA, Nadler LM: Serotherapy of B-cell neoplasms with anti-B4-blocked ricin: a phase I trial of daily bolus infusion. Blood 79: 576-585, 1992

    Google Scholar 

  165. Szatrowski TP, Larson RA, Dodge R, Sklar J, Reynolds C, Westbrook CA, Hurd D, Kolitz J, Velez-Garcia E, Frankel SR, Stewart C, Bloomfield CD, Schiffer CA: The effect of anti-B4-blocked ricin (anti-B4-BR) on minimal residual disease in adults with B-lineage acute lymphoblastic leukemia. Blood 88 (Suppl 1): 669a (Abs # 2665), 1996

    Google Scholar 

  166. O'Connor R, Liu C, Ferris CA, Guild BC, Teicher BA, Corvi C, Liu Y, Arceci RJ, Goldmacher VS, Lambert JM, Blattler WA: Anti-B4-blocked ricin synergizes with doxorubicin and etoposide on multidrug-resistant and drug-sensitive tumors. Blood 86: 4286-4294, 1995

    Google Scholar 

  167. Liu C, Lambert JM, Teicher BA, Blattler WA, O'Connor R: Cure of multidrug-resistant human B-cell lymphoma xenografts by combinations of anti-B4-blocked ricin and chemotherapeutic drugs. Blood 87: 3892-3898, 1996

    Google Scholar 

  168. Roy DC, Perreault C, Belanger R, Gyger M, Le Houillier C, Blattler WA, Lambert JM, Ritz J: Elimination of B-lineage leukemia and lymphoma cells from bone marrow grafts using anti-B4-blocked-ricin immunotoxin. J Clin Immunol 15: 51-57, 1995

    Google Scholar 

  169. Stashenko P, Nadler LM, Hardy R, Schlossman SF: Characterization of a human B lymphocyte-specific antigen. J Immunol 125: 1678-1685, 1980

    Google Scholar 

  170. Anderson KC, Bates MP, Slaughenhoupt BL, Pinkus GS, Schlossman SF, Nadler LM: Expression of human B cellassociated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood 63: 1424-1433, 1984

    Google Scholar 

  171. Kaminski MS, Zasadny KR, Francis IR, Milik AW, Ross CW, Moon SD, Crawford SM, Burgess JM, Petry NA, Butchko GM, Glenn SD: Radioimmunotherapy of B-cell lymphoma with 131I-anti-B1 (anti-CD20) antibody. N Engl J Med 329: 459-465, 1993

    Google Scholar 

  172. Press OW, Eary JF, Appelbaum FR, Martin PJ, Badger CC, Nelp WB, Glenn S, Butchko G, Fisher D, Porter B, Matthews DC, Fisher LD, Bernstein ID: Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N Engl J Med 329: 1219-1224, 1993

    Google Scholar 

  173. Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, Newman RA, Hanna N, Anderson DR: Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83: 435-445, 1994

    Google Scholar 

  174. Maloney DG, Liles TM, Czerwinski DK, Waldichuk C, Rosenberg J, Grillo-Lopez A, Levy R: Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody 9IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 84: 2457-2466, 1994

    Google Scholar 

  175. Maloney DG, Grillo-Lopez AJ, Bodkin D, White C, Foon K, Schilder RJ, Neidhart J, Janakiraman N, Waldichuk C, Davis T, Dallaire BK, Royston I, Levy R: IDEC-C2B8 anti-CD20 antibody: results of long-term follow-up of relapsed NHL phase II trial patients. Blood 86 (Suppl 1): 54a (Abs # 205), 1995

    Google Scholar 

  176. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman M, Heyman MR, Williams M, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F, Jain V, Ho AD, Lister J, Wey K, Shen D, Dallaire BK: Rituximab chimeric anti-CD20 monoclonal. J Clin Oncol 16: 2825-2833, 1998

    Google Scholar 

  177. Czuczman MS, Grillo-Lopez AJ, White CA, Saleh M, Gordon L, LoBuglio AF, Jonas C, Klippenstein D, Dallaire B, Varns C: Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and CHOP chemotherapy. J Clin Oncol 17: 268-276, 1999

    Google Scholar 

  178. O'Brien S, Freireich E, Andreeff M, Lerner S, Keating M: Phase I/II study of Rituxan in chronic lymphocytic leukemia. Blood 92 (Suppl 1): 105a (Abs # 431), 1998

    Google Scholar 

  179. Coiffier B, Haioun C, Ketterer N, Engert A, Tilly H, Ma D, Johnson P, Lister A, Feuring-Buske M, Radford JA, Capdeville R, Diehl V, Reyes F: Rituximab (Anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase II study. Blood 92: 1927-1932, 1998

    Google Scholar 

  180. List AF: Role of multidrug resistance and its pharmacological modulation in acute myeloid leukemia. Leukemia 10: 937-942, 1996

    Google Scholar 

  181. Chen CJ, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, Roninson IB: Internal duplication and homology with bacterial transport proteins in the mdr-1 (P-glycoprotein) gene from multidrug-ressistant human cells. Cell 47: 381, 1986

    Google Scholar 

  182. Campos L, Guyotat D, Archibaud E, Calmard-Oriol P, Tsuruo T, Troncy J, Treille D, Fiere D: Clinical significance of multidrug resistance P-glycoprotein expression on acute nonlymphoblastic leukemia cells at diagnosis. Blood 79: 473-476, 1992

    Google Scholar 

  183. Pirker R, Wallner J, Geissler K, Linkesch W, Haas OA, Bettelheim P, Hopfner M, Scherrer R, Valent P, Haveloc L, Ludwig H, Lechner K: MDR1 gene expression and treatment outcome in acute myeloid leukemia. J Natl Cancer Inst 83: 708-712, 1991

    Google Scholar 

  184. Ivy SP, Olshefski RS, Taylos BJ, Patel KM, Reaman GH: Correlation of P-glycoprotein expression and function in childhood acute leukemia: a children's cancer group study. Blood 88: 309-318, 1996

    Google Scholar 

  185. Guerci A, Merlin JL, Missoum N, Felmann L, Marchal S, Witz F, Rose C, Guerci O: Predictive value for treatment outcome in acute myeloid leukemia of cellular daunorubicin accumulation and P-glycoprotein expresion simultaneously determined by flow cytometry. Blood 85: 2147-2153, 1995

    Google Scholar 

  186. Miller TP, Grogan TM, Dalton WS, Spier CM, Scheper RJ, Salmon SE: P-glycoprotein expression in malignant lymphoma and reversal of clinical drug resistance with chemotherapy plus high-dose verapamil. J Clin Oncol 9: 17-24, 1991

    Google Scholar 

  187. Haussermann K, Benz B, Gekeler V, Schumacher K, Eichelbaum M: Effects of verapamil enantiomers and major metabolites on the cytotoxicity of vincristine and daunomycin in human lymphoma cell lines. Eur J Clin Pharmacol 40: 53-59, 1991

    Google Scholar 

  188. Ahmed JH, Godden J, Meredith PA, Elliott HL: R-verapamil: pharmacokinetics and effects of PR interval, blood pressure and heart rate. Br J Clin Pharmacol 36: 93-98, 1993

    Google Scholar 

  189. Pirker R, Zochbauer S, Kupper H, Lassmann A, Gsur A, Frass M, Knobl P, Lechner K: Dexverapamil as resistance modifier in acute myeloid leukemia. Leukemia 9: 539, 1995

    Google Scholar 

  190. Solary E, Caillot D, Chauffert B, Casasnovas RO, Dumas M, Maynadie M: Feasibility of using quinine, a potential multidrug resistance-reversing agent, in combination with mitoxantrone and cytarabine for the treatment of acute leukemia. J Clin Oncol 10: 1730-1736, 1992

    Google Scholar 

  191. Solary E, Witz B, Caillot D, Moreau P, Desablens B, Cahn JY, Maloisel F, Sadoun A, Pignon B, Guyotat D, Casassus P, Ifrah N, Audhuy B, Berthou C, Delain M, Lamy T, Harousseau JL: Prospectic multicentric randomized study of quinine as a potential MDR-reversing agent for the treatment of acute leukemias. Blood 86 (Suppl 1): 780a (Abs # 3109), 1995

    Google Scholar 

  192. Marie JP, Bastie JN, Coloma F, Suberville AMF, Delmer A, Rio B, Delmas-Marsalet B, Leroux G, Casassus P, Baumelou E, Catalin J, Zittoun R: Cyclosporin A, as a modifier agent in the salvage treatment of cute leukemia. Leukemia 7: 821-824, 1993

    Google Scholar 

  193. List AF, Spier C, Greer J, Wolff S, Hutter J, Dorr R, Salmon S, Futscher B, Baier M, Dalton W: Phase I/II trial of cyclosporine as a chemotherapy-resistance modifier in acute leukemia. J Clin Oncol 11: 1652-1660, 1993

    Google Scholar 

  194. List AF, Kopecky KJ, Willman CL, Spier C, Dorr R, Flaherty L, Hynes H, Appelbaum F: Benefit of cyclosporine modulation of anthracycline resistance in high-risk AML: a Southwest Oncology Group study. Blood 92 (Suppl 1): 312a (Abs #1281), 1998

    Google Scholar 

  195. Twentyman PR, Bleehen NM: Resistance modification by PSC-833, a novel non-immunosuppressive cyclosporin A. Eur J Cancer 27: 1639-1642, 1991

    Google Scholar 

  196. Jiang XR, Kelsey SM, Wu YL, Newland AC: Circumvention of P-glycoprotein-mediated drug resistance in human leukemic cells by non-immunosupressive cyclosporin D analogue, SDZ PSC 833. Br J Hematol 90: 375-383, 1995

    Google Scholar 

  197. Boote DJ, Dennis IF, Twentyman PR, Osborne RJ, Laburte C, Hensel S, Smyth JF, Brampton MH, Bleehen NM: Phase I study of etoposide with SDZ PSC 833 as a modulator of multidrug resistance in patients with cancer. J Clin Oncol: 610-618, 1996

  198. Gonzalez O, Colombo T, DeFusco M, Imperatori I, Zucchetti M, D'Incalci M: Changes in doxorubicin distribution and toxicity in mice pretreated with the cyclosporin analogue SDZ PSC 833. Cancer Chemother Pharmacol 36: 335-340, 1995

    Google Scholar 

  199. Keller RP, Altermatt HJ, Nooter K, Poschmann G, Laissue JA, Bollinger P, Hiestand PC: SDZ PSC 833, a nonimmunosuppresive cyclosporine: its potency in overcoming P-glycoprotein-mediated multidrug resistance of murine leukemia. Int J Cancer 50: 593-597, 1992

    Google Scholar 

  200. Bailly JD, Muller C, Jaffrezou JP, Demur C, Gassar G, Bordier C, Laurent G: Lack of correlation between expression and function of P-glycoprotein in acute myeloid leukemia cell lines. Leukemia 9: 799-807, 1995

    Google Scholar 

  201. Colombo T, Gonzalez Paz O, D'Incalci M: Distribution and activity of doxorubicin combined with SDZ PSC 833 in mice with P388 and P388/DOX leukemia. Br J Cancer 73: 866-871, 1996

    Google Scholar 

  202. Abbaszadegan MR, Futscher BW, Klimecki WT, List A, Dalton WS: Analysis of multidrug resistance-associated protein (MRP) messenger RNA in normal and malignant hematopoietic cells. Cancer Res 54: 4676-4679, 1994

    Google Scholar 

  203. Schneider E, Cowan KH, Bader H, Toomey S, Scwartz GN, Karp JE, Kaufmann SH: Increased expression of the multidmg resistance-associated protein gene in relapsed acute leukemia. Blood 85: 186-193, 1995

    Google Scholar 

  204. Slovak ML, Ho JP, Bhardwaj G, Kurz EU, Deeley RG, Cole SPC: Localization of a novel multidrug resistance-associated gene in the HT1080/DR4 and H69AR human tumor cell lines. Cancer Res 53: 3221-3225, 1993

    Google Scholar 

  205. Kuss BJ, Deeley RG, Cole SP, Willman CL, Kopecky KJ, Wolman SR, Eyre HJ, Lane SA, Nancarrow JK, Whitmore SA, Callen DF: Deletion of gene for multidrug resistance in acute myeloid leukemia with inversion in chromosome 16: prognostic implications. Lancet 343: 1531-1534, 1994

    Google Scholar 

  206. List AF, Spier CS, Grogan TM, Johnson C, Roe DJ, Greer JP, Wolff SN, Broxterman HJ, Scheffer GL, Scheper RJ, Dalton WS: Overexpression of the major vault transporter protein lung-resistance protein predicts treatment outcome in acute myelogenous leukemia. Blood 87: 2464-2469, 1996

    Google Scholar 

  207. Scheffer GL, Wijnagaard PLJ, Flens MJ, Izquierdo MA, Slovak ML, Pinedo HM, Meijer CJLM, Clevers HC, Scheper RJ: The drug resistance related protein LRP is a major vault protein. Nat Med 1: 578-582, 1995

    Google Scholar 

  208. Leier I, Jedlitschky G, Buchholz U, Cole SP, Deeley RG, Keppler D: TheMRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem 269: 27807-27810, 1994

    Google Scholar 

  209. Sceper RJ, Broxterman HJ, Scheffer GL, Kaaijk P, Dalton WS, van Heijningen TH, van Kalken CK, Slovak ML, de Vries EG, van der Valk P: Overexpression of a M(r) 110,000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance. Cancer Res 53: 1475-1479, 1993

    Google Scholar 

  210. Carter A, Silvian-Draxler I, Tatarsky I: Effect of interleukin-1, tumor necrosis factor-alpha, and interferon-alpha on the blast cells of acute myeloblastic leukemia. Am J Hematol 40: 245-251, 1992

    Google Scholar 

  211. Gallagher RE, Lurie KJ, Leavitt RD, Wiernik PH: Effects of interferon and retinoic acid on the growth and differentiation of clonogenic leukemic cells from acute myelogenous leukemia patients treated with recombinant leukocyte-αA interferon. Leukemia Res 11: 609-619, 1987

    Google Scholar 

  212. Sissolak G, Hoffbrand AV, Mehta AB, Ganeshaguru K: Effects of interferon-alpha (IFN) on the expression of interleukin 1-beta (IL-1), interleukin 6 (IL-6), granulocytemacrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor-alpha (TNF) in acute myeloid leukemia (AML) blasts. Leukemia 6: 1155-1160, 1992

    Google Scholar 

  213. Brune M, Hansson M, Mellqvist UH, Hermodsson S, Hellstrand K: NK cell-mediated killing of AML blasts: role of histamine, monocytes and reactive oxygen metabolites. European J Hematol 57: 312-319, 1996

    Google Scholar 

  214. Bezwoda WR, Seymour L, Mansoor N, Dansey R, Davidge-Pitts M, Dreosti L: Interferon alpha enhances the cytotoxicity of cytosine arabinoside in HL60 cells by increasing apoptosis and is synergistic with cytosine arabinoside in clinical combination treatment regimens. Proc ASCO 14: 338 (Abs #1013), 1995

    Google Scholar 

  215. Palmieri G, Morabito A, Rea A, Caraglia M, Tagliaferri P, Bianco AR: Cytosine arabinoside (ara-C) plus alpha-interferon (alpha IFN) determine prolonged complete remissions in patients with agressive non-Hodgkin's lymphoma partially responsive to first-line doxorubicin-containing regimens. Br J Hematol 88: 421-423, 1994

    Google Scholar 

  216. Venditti A, Scimo MT, del Poeta G, Buccisano F, Stasi R, Mastino A, Grelli S, Favalli C, Garaci E, Papa G: Recombinant interferon alpha 2a, thymopentin and low doses of cytosine arabinoside for the treatment of myelodysplasti syndromes: a pilot study. Leukemia Lymphoma 16: 335-342, 1995

    Google Scholar 

  217. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA: Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med 155: 1823-1841, 1982

    Google Scholar 

  218. Thompson JA, Peace DJ, Klamet JP, Kern DE, Greenberg PD, Cheever MA: Eradication of disseminated murine leukemia by treatment with high-dose interleukin-2. J Immunol 137: 3675-3680, 1986

    Google Scholar 

  219. Johnson CS, Thurlow SM, Furmanski P: Lymphokineactivated killer cell plus recombinant interleukin-2 therapy of erythroleukemia in mice. Leukemia 3: 91-96, 1989

    Google Scholar 

  220. Oshimi K, Oshimi Y, Akutsu M, Takei Y, Saito H, Okada M, Mizoguchi H: Cytotoxicity of interleukin 2 activated lymphocytes for leukemia and lymphoma cells. Blood 68: 938-948, 1986

    Google Scholar 

  221. Fierro MT, Xin-Sheng L, Lusso P, Bonferroni M, Matera L, Cesano A, Lista P, Arione R, Forni G, Foa R: In vitro and in vivo susceptibility of human leukemic cells to lymphokine activated killer activity. Leukemia 2: 50-54, 1988

    Google Scholar 

  222. Komada Y, Zhou Y-W, Zhang X-L, Chen T-X, Tanaka S, Azuma E, Sakurai M: Fas/APO-1 (CD95)-mediated cytotoxicity is responsible for the apoptotic cell death of leukemic cells induced by interleukin-2-activated T cells. Br J Hematol 96: 147-157, 1997

    Google Scholar 

  223. Klingemann HG, Phillips GL: Is there a place for immunotherapy with interleukin-2 to prevent relapse after autologous stem cell transplantation for acute leukemia? Leukemia Lymphoma 16: 397-405, 1995

    Google Scholar 

  224. Foa R, Meloni G, Tosti S, Novarino A, Fenu S, Gavosto F, Mandelli F: Treatment of acute myeloid leukemia patients with recombinant interleukin 2: a pilot study. Br J Hematol 77: 491-496, 1991

    Google Scholar 

  225. Lim SH, Newland AC, Kelsey S, Bell A, Offerman E, Rist C, Gozzard D, Bareford D, Smith MP, Goldstone AH: Continuous intravenous infusion of high-dose recombinant interleukin-2 for acute myeloid leukemia: a phase II study. Cancer Immunol Immunother 34: 337-342, 1992

    Google Scholar 

  226. Meloni G, Foa R, Vignetti M, Guarini A, Fenu S, Tosti S, Tos AG, Mandelli F: Interleukin-2 may induce prolonged remissions in advanced acute myelogenous leukemia. Blood 84: 2158-2163, 1994

    Google Scholar 

  227. Wiernik PH, Dutcher JP, Todd M, Caliendo G, Benson L: Polyethylene glycolated interleukin-2 as maintenance therapy for acute myelogenous leukemia in second remission. Am J Hematol 47: 41-44, 1994

    Google Scholar 

  228. Bergmann L, Heil G, Kolbe K, Lengfelder E, Puzicha E, Martin H, Lohmeyer J, Mitrou PS, Hoelzer D: Interleukin-2 bolus infusion as late consolidation therapy in second remission of acute myeloblastic leukemia. Leukemia Lymphoma 16: 271-279, 1995

    Google Scholar 

  229. Cortes JE, Kantarjian HM, O'Brien S, Giles F, Keating MJ, Freireich EJ, Estey EH: A pilot study of interleukin-2 for patients with acute myelogenous leukemia in first complete remission. Cancer 85: 1506-1513, 1999

    Google Scholar 

  230. Brune M, Hellstrand K: Remission maintenance therapy with histamine and interleukin-2 in acute myelogenous leukemia. Br J Hematol 92: 620-626, 1996

    Google Scholar 

  231. Ogata K, Yokose N, Nomura T: Interleukin-2 therapy for myelodysplastic syndrome: dose it work? Leukemia Lymphoma 17: 411-415, 1995

    Google Scholar 

  232. Toze CL, Barnett MJ, Klingemann HG: Response of therapy-related myelodysplasia to low-dose interleukin-2. Leukemia 7: 463-465, 1993

    Google Scholar 

  233. Lauria F, Raspadori D, Rondelli D, Ventura MA, Foa R: In vitro susceptibility of acute leukemia cells to the cytotoxic activity of allogeneic and autologous lymphokine activated killer (LAK) effecters: correlation with the rate and duration of complete remission and with survival. Leukemia 8: 724-728, 1994

    Google Scholar 

  234. Cignetti A, Guarini A, Carbone A, Forni M, Cronin K, Forni G, Gansbacher B, Foa R: Transduction of the IL2 gene into human acute leukemia cells: induction of tumor rejection without modifying cell proliferation and IL2 receptor expression. J Natl Cancer Inst 86: 785-791, 1994

    Google Scholar 

  235. Foa R: Interleukin 2 in the management of acute leukemia. Br J Hematol 92: 1-8, 1996

    Google Scholar 

  236. Kalland T: Effects of the immunomodulator LS 2616 on growth and metastasis of the murine B16-F10 melanoma. Cancer Res 46: 3018-3022, 1986

    Google Scholar 

  237. Kalland T: Regulation of natural killer progenitors. Studies with a novel immunomodulator with distinct effects at the precursor level. J Immunol 144: 4472-4476, 1990

    Google Scholar 

  238. Vaz F, Silva MR, Ascensao JL: Enhanced lymphokineactivated killer cell activity by an immunomodulator, Roquinimex. Br J Cancer 72: 1498-1503, 1995

    Google Scholar 

  239. Stalhandske T, Kalland T: Effect of the novel immunomodulator LS 2616 on the delayed-type hypersensitivity reaction to Bordetella pertussis in the rat. Immunopharmacol 11: 87-92, 1986

    Google Scholar 

  240. Larson EL, Joki A, Stalhandske T: Mechanism of action of the immunomodulator LS 2616 on T cell response. Int J Immunopharmacol 9: 425-431, 1987

    Google Scholar 

  241. Rowe JM, Nilsson BI, Simonsson B: Treatment of minimal residual disease in myeloid leukemia-The immunotherapeutic options with emphasis on linomide. Leukemia Lymphoma 11: 321-329, 1993

    Google Scholar 

  242. Candiotti R, Slavin S, Barak V, Nagler A: The novel immunomodulator, linomide, stimulates interleukin-2-induced human natural killer (NK) cell and PHA-stimulated T cell proliferation from normal donors. Leukemia Res 20: 57-63, 1996

    Google Scholar 

  243. Bergh JCS, Totterman TH, Termander BC, Strandgarden KAMP, Gunnarsson POG, Nilsson BI: The first clinical pilot study of roquinimex (Linomider) in cancer patients with special focus on immunological effects. Cancer Invest 15: 204-211, 1997

    Google Scholar 

  244. Rowe J, Ryan D, Dipersio J, Gaspari A, Nilsson B, Larsson L, Liesveld J, Kouides P, Simonsson B: Autografting in chronic myelogenous leukemia followed by immunotherapy. Stem Cell 11 (Suppl 3): 34-42, 1993

    Google Scholar 

  245. Gaspari AA, Cheng SF, DiPersio JF, Rowe JM; Roquinimex-induced graft-versus-host reaction after autologous bone marrow transplantation. J Am Acad Derm 33: 711-717, 1995

    Google Scholar 

  246. Bengtsson M, Simonsson B, Carlsson K, Nilsson B, Smedmyr B, Termander B, Oberg G, Totterman TH: Stimulation of NK cell, T cell, and monocyte functions by the novel immunomodulator Linomide after autologous bone marrow transplantation. Transplantation 53: 882-888, 1992

    Google Scholar 

  247. Rosenfeld CS, Zeigler ZR, Shadduck RK, Nilsson BO: Phase II study of Roquinimex in myelodysplastic syndrome. Am J Clin Oncol 20: 189-192, 1997

    Google Scholar 

  248. Guinan EC, Gribben JG, Boussiotis VA, Freeman GJ, Nadler LM: Pivotal role of the B7:CD28 pathway in transplantation tolerance and tumor immunity. Blood 84: 3261-3282, 1994

    Google Scholar 

  249. Dunussi-Joannopoulos K, Weinstein HJ, Nickerson PW, Strom TB, Burakoff SJ, Croop JM, Arceci RJ: Irradiated B7-1 transduced primary acute myelogenous leukemia (AML) Gell can be used as therapeutic vaccines in murine AML. Blood 87: 2938-2946, 1996

    Google Scholar 

  250. Dunussi-Joannopoulos K, Krenger W, Weinstein HJ, Ferrara JL, Croop JM: CD8+ T cells activated during the course of murine acute myelogenous leukemia elicit therapeutic responses to late B7 vaccines after cytoreductive treatment. Blood 89: 2915-2924, 1997

    Google Scholar 

  251. Dunussi-Joannopoulos K, Dranoff G, Weinstein HJ, Ferrara JLM, Bierer BE, Croop JM: Gene immunotherapy in murine acute myeloid leukemia: granulocyte-macrophage colonystimulating factor tumor cell vaccines elicit more potent anti-tumor immunity compared with B7 family and other cytokine vaccines. Blood 91: 222-230, 1998

    Google Scholar 

  252. Bocchia M, Wentworth PA, Southwood S, Sidney J, McGraw K, Scheinberg DA, Sette A: Specific binding of leukemia oncogene fusion protein peptides to HLA class 1 molecules. Blood 85: 2680-2684, 1995

    Google Scholar 

  253. Dengler R, Munstermann U, Al-Batran S, Hausner I, Faderl S, Nerl C, Emmercih B: Immunocytochemical and flow cytometric detection of proteinase 3 (myeloblastin) in normal and leukemic myeloid cells. Br J Haematol 89: 250, 1995

    Google Scholar 

  254. Bories D, Raynal MC, Solomon DH, Darzynkiewicz Z, Cayre YE: Down-regulation of a serine protease, myeloblastin, causes growth arrest and differentiation of promyelocytic leukemia cells. Cell 59: 959, 1989

    Google Scholar 

  255. Molldrem J, Dermime S, Parker K, Jiang YZ, Mavroudis D, Hensel N, Fukushima P, Barrett AJ: Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood 88: 2450-2457, 1996

    Google Scholar 

  256. Molldrem JJ, Clave E, Jiang YZ, Mavroudis D, Raptis A, Hensel N, Agarwala V, Barrett AJ: Cytotoxic T lymphocytes specific for a nonpolymorphic proteinase 3 peptide preferentially inhibit chronic myeloid leukemia colony-forming units. Blood 90: 2529-2534, 1997

    Google Scholar 

  257. Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 392: 245-252, 1998

    Google Scholar 

  258. Choudhury A, Gajewski JL, Liang JC, Popat U, Claxton DF, Kliche KO, Andreeff M, Champlin RE: Use of leukemic dendritic cell for the generation of antileukemic cellular cytotoxicity against Philadelphia chromosome-positive chronic myelogenous leukemia. Blood 89: 1133-1142, 1997

    Google Scholar 

  259. Choudhury A, Liang JC, Thomas EK, Flores-Romo L, Xie QS, Agusala K, Sutaria S, Sinha I, Champlin RE, Claxton DF: Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses. Blood 93: 780-786, 1999

    Google Scholar 

  260. Lishner M, Curtis JE, Minkin S, McCulloch EA: Interaction between retinoic acid and cytosine arabinoside affecting the blast cells of acute myeloblastic leukemia. Leukemia 3: 78, 1989

    Google Scholar 

  261. Yang GS, Minden MD, McCulloch EA: Regulation by retinoic acid and hydrocortisone of the anthracycline sensitivity of blast cells of acute myeloblastic leukemia. Leukemia 8: 2065-2075, 1994

    Google Scholar 

  262. Hu Z-B, Minden MD, McCulloch EA: Direct evidence for the participation of bcl-2 in the regulation by retinoic acid of the ara-C sensitivity of leukemic stem cells. Leukemia 9: 1667, 1995

    Google Scholar 

  263. Bradbury DA, Aldington S, Zhu YM, Russell NH: Downregulation of bcl-2 in AML blasts by all-trans retinoic acid and its relationship to CD34 antigen expression. Br J Haematol 94: 671-675, 1996

    Google Scholar 

  264. Hu Z-B, Minden MD, McCulloch EA: Regulation of the synthesis of bcl-2 protein by growth factors. Leukemia 10: 1925, 1996

    Google Scholar 

  265. Estey EH, Thall PF, Pierce S, Cortes J, Beran M, Kantarjian H, Keating MJ, Andreeff M, Freireich E: Randomized phase II study of fludarabine + cytosine arabinoside + idarubicin ± all-trans retinoic acid ± granulocyte colony-stimulating Factor in poor prognosis newly diagnosed acute myelogenous leukemia and myelodysplastic syndrome. Blood 93: 2478-2484, 1999

    Google Scholar 

  266. Griggs JJ, Henley SE, Rowe JM: Treatment of refractory undifferentiated acute myelogenous leukemia with all-trans retinoic acid. Am J Hematol 45: 177-180, 1994

    Google Scholar 

  267. Venditti A, Stasi R, Del Poeta G, Buccisano F, Aronica G, Bruno A, Pisani F, Caravita T, Masi M, Tribalto M: All-trans retinoic acid and low-dose cytosine arabinoside for the treatment of “poor prognosis” acute myeloid leukemia. Leukemia 9: 1121-1125, 1995

    Google Scholar 

  268. Sakashita A, Kizaki M, Pakkala S, Schiller G, Tsuruoka N, Tomosaki R, Cameron JF, Dawson MI, Koeffler HP: 9-cisretinoic acid: effects on normal and leukemic hematopoiesis in vitro. Blood 81: 1009-1016, 1993

    Google Scholar 

  269. Shen Z-X, Chen G-Q, Ni J-H, Li X-S, Xiong S-M, Qiu Q-Y, Zhu J, Tang W, Sun G-L, Yang K-Q, Chen Y, Zhou L, Fang Z-W, Wang Y-T, Ma J, Zhang P, Zhang T-D, Chen S-J, Chen S-J, Chen Z, Wang Z-Y: Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 89: 3354-3360, 1997

    Google Scholar 

  270. Soignet SL, Maslak P, Wang Z-G, Jhanwar S, Calleja E, Dardashti LJ, Corso D, DeBlasio A, Gabrilove J, Scheinberg DA, Pandolfi PP, Warrell RP: Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 339: 1341-1348, 1998

    Google Scholar 

  271. Chen G-Q, Zhu J, Shi X-G, Ni J-H, Zhong H-J, Si G-Y, Jin X-L, Tang W, Li X-S, Xong S-M, Shen Z-X, Sun G-L, Ma J, Zhang P, Zhang T-D, Gazin C, Naoe T, Chen S-J, Wang Z-Y, Chen Z: In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RARα/PML proteins. Blood 88: 1052-1061, 1996

    Google Scholar 

  272. Shao W, Fanelli M, Ferrara F, Riccioni R, Rosenauer A, Davison K, Lamph WW, Waxman S, Pelicci PG, LoCoco F, Avvisati G, Testa U, Peschle C, Gambacorti-Passerini C, Nervi C, Miller WH Jr: Arsenic trioxide as an inducer of apoptosis and loss of PML/RAR alpha protein in acute promyelocytic leukemia cells. J Natl Cancer Inst 90: 86-88, 1998

    Google Scholar 

  273. Wang Z-G, Rivi R, Delva L, Konig A, Scheinberg DA, Gambacorti-Passerini C, Gabrilove JL, Warrell RP, Pandolfi PP: Aresenic trioxide and melarsoprol induce programmed cell death in myeloid leukemia cell lines and function in a PML and PML-RARα independent manner. Blood 92: 1497-1504, 1998

    Google Scholar 

  274. Calleja EM, Gabrilove JL, Warrell RP: Arsenic trioxide inhibits cell survival in a variety of cancer cell types. Proc Am Soc Clin Oncol 17: 218a (Abs #844), 1998

    Google Scholar 

  275. Yang CH, Wang TY, Chen YC: Cytotoxicity of arsenic trioxide in cancer cell lines. Proc Am Assoc Cancer Res 39: 227 (Abs), 1998

    Google Scholar 

  276. Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, Lydon NB, Gilliland DG, Druker BJ: CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 90: 4947-4952, 1997

    Google Scholar 

  277. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB: Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature Medicine 2: 561-566, 1996

    Google Scholar 

  278. Beran M, Cao X, Estrov Z, Jeha S, Jin G, O'Brien S, Talpaz M, Arlinghaus RB, Lydon NB, Kantarjian H: Selective inhibition of cell proliferation and BCR-ABL phosphorylation in acute lymphoblastic leukemia cells expressing Mr 190,000 BCR-ABL protein by a tyrosine kinase inhibitor (CGP-57148). Clinical Cancer Research 4: 1661-1672, 1998

    Google Scholar 

  279. Druker BJ, Sawyers CL, Talpaz M, Resta D, Peng B, Ford J: Phase I trial of a specific ABL tyrosine kinase inhibitor, CGP 57148, in interferon refractory chronic myelogenous leukemia patients. Proc ASCO 18: 7a (Abs), 1999

    Google Scholar 

  280. Ahuja HG, Foti A, Bareli M, et al.: The pattern of mutational involvement of ras genes in human hematologic malignancies determined by DNA amplification and direct sequencing. Blood 75: 1684-1690, 1990

    Google Scholar 

  281. Janssen JWG, Steenvoorden ACM, Lyons J, et al.: Ras gene mutations in acute and chronic myelocytic leukemias, chronic myeloproliferative disorders, and myelodysplastic syndromes. Proc Natl Acad Sci USA 84: 9228-9232, 1987

    Google Scholar 

  282. Tamanoi F: Inhibitors of ras farnesyltransferase. Trends Biochem Sci 18: 349-353, 1993

    Google Scholar 

  283. Geller RB: Use of cytokines in the treatment of acute myelocytic leukemia: A critical review. J Clin Oncol 14: 1371-1382, 1996

    Google Scholar 

  284. Armitage JO: Emerging applications of recombinant human granulocyte-macrophage colony-stimulating factor. Blood 92: 4491-4508, 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortes, J., Kantarjian, H.M. Promising Approaches in Acute Leukemia. Invest New Drugs 18, 57–82 (2000). https://doi.org/10.1023/A:1006392116024

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006392116024

Navigation