Skip to main content
Log in

The Space-Time Origin of Quantum Mechanics: Covering Law

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A Hilbert-space model for quantum logic follows from space-time structure in theories with consistent state collapse descriptions. Lorentz covariance implies a condition on space-like separated propositions that if imposed on generally commuting ones would lead to the covering law, and such a generalization can be argued if state preparation can be conditioned to space-like separated events using EPR-type correlations. The covering law is thus related to space-time structure, though a final understanding of it, through a self-consistency requirement, will probably require quantum space-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Piron, Foundations of Quantum Physics (Benjamin, London, 1976).

    Google Scholar 

  2. G. Svetlichny, Found. Phys. 28, 131 (1998); quant-ph/9511002.

    Google Scholar 

  3. P. Mittelstaedt, Internat. J. Theoret. Phys. 22, 293 (1983).

    Google Scholar 

  4. P. Mittelstaedt, Proceedings, International Symposium on the Foundations of Quantum Mechanics (Tokyo, 1983), pp. 251-255.

  5. P. Mittelstaedt and E. W. Stachow, Internat. J. Theoret. Phys. 22, 517 (1983).

    Google Scholar 

  6. N. Neumann and R. Werner, Internat. J. Theoret. Phys. 22, 781 (1983).

    Google Scholar 

  7. R. Haag, Local Quantum Physics (Springer, Berlin, 1992).

    Google Scholar 

  8. M. Mugur-Schaä chter, Found. Phys. 21, 1387 (1991).

    Google Scholar 

  9. M. Mugur-Schaä chter, Found. Phys. 22, 235 (1992).

    Google Scholar 

  10. J. B. Hartle, “Spacetime quantum mechanics and the quantum mechanics of spacetime,” in 1992 Les Houches Ecole d'eé teé, Gravitation et Quantifications.

  11. R. Omneès, The Interpretation of Quantum Mechanics (University Press, Princeton, 1994).

    Google Scholar 

  12. G. Svetlichny, “Space-time structure and quantum mechanics,” to appear in the proceedings of the XXXth Workshop on Geometric Methods in Physics: Coherent States, Quantization and Gravity (Białowież a, Poland, 1998).

    Google Scholar 

  13. G. Svetlichny, Found. Phys. 20, 635 (1990).

    Google Scholar 

  14. G. Svetlichny, Internat. J. Theoret. Phys. 31, 1797 (1992).

    Google Scholar 

  15. M. Czachor, quant-ph/9501008.

  16. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

    Google Scholar 

  17. N. Gisin, Phys. Rev. Lett. 52, 1657 (1984).

    Google Scholar 

  18. N. Gisin, Phys. Rev. Lett. 53, 1776 (1984).

    Google Scholar 

  19. N. Gisin, Helvet. Physica Acta 62, 363 (1989).

    Google Scholar 

  20. N. Gisin, Phys. Lett. A 143, 1 (1990).

    Google Scholar 

  21. P. Pearle, Phys. Rev. Lett. 53, 1775 (1984).

    Google Scholar 

  22. P. Pearle, Phys. Rev. D 33, 2240 (1986).

    Google Scholar 

  23. Y. Aharonov and D. Z. Albert, Phys. Rev. D 29, 228 (1984).

    Google Scholar 

  24. A more extensive version of this section is found in quant-ph/9912099.

  25. I. C. Percival, quant-ph/9906005.

  26. G. Svetlichny, “Quantum evolution and space-time structure,” in Nonlinear, Deformed and Irreversible Quantum Systems. Proceedings of the International Symposium on Mathematical Physics, Arnold Sommerfeld Institute, 15–19 August 1994, Clausthal, Germany, H.-D. Doebner, V. K. Dobrev, and P. Nattermann, eds. (World Scientific, Singapore, 1995), p. 246 or in a slightly expanded form in quant-ph/9512004.

    Google Scholar 

  27. G. Svetlichny, “On relativistic non-linear quantum mechanics,” in Proceedings, Second International Conference “Symmetry in Nonlinear Mathematical Physics. Memorial Prof. W. Fushchych Conference,” M. Shkil, A. Nikitin, and V. Boyko, eds. (Institute of Mathe-matics of the National Academy of Sciences of Ukraine, Kiev, 1997), Vol. 2, pp. 262.

    Google Scholar 

  28. R. R. Streater and A. S. Wightman, PCT, Spin and Statistics and All that (Benjamin, New York, 1964).

    Google Scholar 

  29. H. Araki, Progr. Theoret. Phys. 32, 956 (1964).

    Google Scholar 

  30. W. Guz, Rep. Math. Phys. 16, 125 (1979).

    Google Scholar 

  31. W. Guz, Rep. Math. Phys. 17, 385 (1980).

    Google Scholar 

  32. J. C. T. Pool, Comm. Math. Phys. 9, 118 (1968).

    Google Scholar 

  33. J. C. T. Pool, Comm. Math. Phys. 9, 212 (1968).

    Google Scholar 

  34. B. Schroer, “New concepts in particle physics from solution of an old problem,” hep-th/ 9908021.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svetlichny, G. The Space-Time Origin of Quantum Mechanics: Covering Law. Foundations of Physics 30, 1819–1847 (2000). https://doi.org/10.1023/A:1003797204134

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003797204134

Keywords

Navigation