Advertisement

Foundations of Physics

, Volume 30, Issue 12, pp 2101–2112 | Cite as

Superconductivity in the Two-Dimensional Hubbard Model

  • Walter Metzner
Article

Abstract

It is shown that the existence of d-wave superconductivity in the two-dimensional Hubbard model close to half-filling can be inferred from a renormalization group analysis at one-loop level.

Keywords

Renormalization Group Group Analysis Hubbard Model Renormalization Group Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).Google Scholar
  2. 2.
    J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).Google Scholar
  3. 3.
    J. Hubbard, Proc. Roy. Soc. London A276, 238 (1963).Google Scholar
  4. 4.
    See, for example, The Hubbard Model, A. Montorsi, ed. (World Scientific, Singapore, 1992).Google Scholar
  5. 5.
    P. W. Anderson, Science 235, 1196 (1987).Google Scholar
  6. 6.
    For a review on d-wave superconductivity from spin fluctuations, see D. J. Scalapino, Phys. Rep. 250, 329 (1995).Google Scholar
  7. 7.
    K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B 34, 6554 (1986).Google Scholar
  8. 8.
    D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 34, 8190 (1986).Google Scholar
  9. 9.
    N. E. Bickers, D. J. Scalapino, and R. T. Scalettar, Int. J. Mod. Phys. B 1, 687 (1987).Google Scholar
  10. 10.
    N. E. Bickers, D. J. Scalapino, and S. R. White, Phys. Rev. Lett. 62, 961 (1989).Google Scholar
  11. 11.
    For a review of numerical work, see E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).Google Scholar
  12. 12.
    H. J. Schulz, Europhys. Lett. 4, 609 (1987).Google Scholar
  13. 13.
    I. Dzyaloshinskii, Sov. Phys. JETP 66, 848 (1987).Google Scholar
  14. 14.
    P. Lederer, G. Montambaux, and D. Poilblanc, J. Phys. (Paris) 48, 1613 (1987).Google Scholar
  15. 15.
    For an early review on 1D Fermi systems, see J. Solyom, Adv. Phys. 28, 201 (1979).Google Scholar
  16. 16.
    For a comprehensive modern review on 1D Fermi systems, see J. Voit, Rep. Prog. Phys. 57, 977 (1994).Google Scholar
  17. 17.
    A. T. Zheleznyak, V. M. Yakovenko, and I. E. Dzyaloshinskii, Phys. Rev. B 55, 3200 (1997).Google Scholar
  18. 18.
    D. Zanchi and H. J. Schulz, Z. Phys. B 103, 339 (1997); Europhys. Lett. 44, 235 (1998); cond-mat 9812303.Google Scholar
  19. 19.
    M. Salmhofer, Commun. Math. Phys. 194, 249 (1998); Renormalization (Springer, 1998).Google Scholar
  20. 20.
    C.J. Halboth and W. Metzner, Phys. Rev. B 61, 7364 (2000).Google Scholar
  21. 21.
    J. Polchinski, Nucl. Phys. B231, 269 (1984).Google Scholar
  22. 22.
    See, for example, H. J. Schulz, Phys. Rev. Lett. 64, 1445 (1990), where also the choice of δ as a function of doping is discussed.Google Scholar
  23. 23.
    J. Feldman, J. Magnen, V. Rivasseau, and E. Trubowitz, Europhys. Lett. 24, 437 (1993).Google Scholar
  24. 24.
    R. Hlubina, S. Sorella, and F. Guinea, Phys. Rev. Lett. 78, 1343 (1997).Google Scholar
  25. 25.
    C. J. Halboth and W. Metzner, cond-mat/0003349, Phys. Rev. Lett. (in press).Google Scholar
  26. 26.
    N. Furukawa, T. M. Rice, and M. Salmhofer, Phys. Rev. Lett. 81, 3195 (1998).Google Scholar
  27. 27.
    C. Honerkamp, M. Salmhofer, N. Furukawa, and T.M. Rice, cond-mat/9912358.Google Scholar
  28. 28.
    J. Gonza_ lez, F. Guinea, and M. A. H. Vozmediano, Europhys. Lett. 34, 711 (1996); Nucl. Phys. B 485, 694 (1997); Phys. Rev. Lett. 84, 4930 (2000).Google Scholar
  29. 29.
    I. Dzyaloshinskii, J. Phys. I 6, 119 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Walter Metzner
    • 1
  1. 1.Institut für Theoretische Physik CTechnische Hochschule AachenAachenGermany

Personalised recommendations