Advertisement

Foundations of Physics

, Volume 30, Issue 12, pp 2061–2078 | Cite as

Slave-Boson Mean-Field Theory of Spin- and Orbital- Ordered States in the Degenerate Hubbard Model

  • Hideo Hasegawa
Article

Abstract

The mean-field theory with the use of the slave-boson functional method has been generalized to take account of the spin- and/or orbital-ordered state in the doubly degenerate Hubbard model. Numerical calculations are presented of the antiferromagnetic orbital-ordered state in the half-filled simple-cubic model. The orbital order in the present theory is much reduced compared with that in the Hartree–Fock approximation because of the large orbital fluctuations. From a comparison of the ground-state energy, the antiferromagnetic orbital state is shown to be unstable against the antiferromagnetic spin state, although the situation becomes reversed when the exchange interaction is negative.

Keywords

Numerical Calculation Order State Exchange Interaction Spin State Hubbard Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963); Phys. Rev. A 137, 1726 (1965).Google Scholar
  2. 2.
    T. A. Kaplan, P. Horsch, and P. Fulde, Phys. Rev. Lett. 49, 889 (1982).Google Scholar
  3. 3.
    H. Yokoyama and H. Shiba, J. Phys. Soc. Jpn. 56, 1490 (1987); ibid. 56, 3582 (1987).Google Scholar
  4. 4.
    W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 4302 (1970).Google Scholar
  5. 5.
    G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett. 57, 1362 (1986).Google Scholar
  6. 6.
    W. Metzner and D. Vollhardt, Phys. Rev. Lett. 59, 121 (1987); Phys. Rev. B 37, 7382 (1988).Google Scholar
  7. 7.
    F. Gebhard and D. Vollhardt, Phys. Rev. Lett. 59, 1472 (1987); Phys. Rev. B 38, 6911 (1988).Google Scholar
  8. 8.
    W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).Google Scholar
  9. 9.
    W. Metzner, Z. Phys. B 77, 253 (1989).Google Scholar
  10. 10.
    F. Gebhard, Phys. Rev. B 41, 9452 (1990).Google Scholar
  11. 11.
    F. Gebhard, “The Mott Metal-Insulator Transition-Models and Methods,” in Springer Tracts in Modern Physics, Vol. 137 (Springer, Berlin, 1997).Google Scholar
  12. 12.
    K. A. Chao and M. C. Gutzwiller,Phys. Rev. B 4, 4034 (1971).Google Scholar
  13. 13.
    J. P. Lu, Phys. Rev. B 49, 5687 (1994).Google Scholar
  14. 14.
    T. Okabe, J. Phys. Soc. Jpn. 65, 1056 (1996).Google Scholar
  15. 15.
    T. Okabe, J. Phys. Soc. Jpn. 66, 2129 (1997).Google Scholar
  16. 16.
    J. Bünemann and W. Weber, Phys. Rev. B 55, R4011 (1997).Google Scholar
  17. 17.
    J. Bünemann, Eur. Phys. J. B 4, 29 (1998).Google Scholar
  18. 18.
    H. Hasegawa, J. Phys. Soc. Jpn. 66, 1391 (1997).Google Scholar
  19. 19.
    R. Frésard and G. Kotliar, Phys. Rev. B 56, 12909 (1997).Google Scholar
  20. 20.
    H. Hasegawa, J. Phys. Soc. Jpn. 66, 3522 (1997).Google Scholar
  21. 21.
    H. Hasegawa, Phys. Rev. B 56, 1196 (1997).Google Scholar
  22. 22.
    J. Bünemann, F. Gebhard, and W. Weber, J. Phys. Cond. Matt. 8, 7343 (1997).Google Scholar
  23. 23.
    J. Bünemann, W. Weber, and F. Gebhard, Phys. Rev. B 57, 6896 (1998).Google Scholar
  24. 24.
    G. Kotliar and H. Kajueter, Phys. Rev. B 54, R14221 (1996).Google Scholar
  25. 25.
    M. J. Rozenberg, Phys. Rev. B 55 R4855 (1997).Google Scholar
  26. 26.
    W. Gill and D. J. Scalapino, Phys. Rev. B 35, 215 (1987).Google Scholar
  27. 27.
    J. E. Han, M. Jarrel, and D. L. Cox, Phys. Rev. B 58, R4199 (1998).Google Scholar
  28. 28.
    Y. Motome and M. Imada, J. Phys. Soc. Jpn. 67, 3199 (1998).Google Scholar
  29. 29.
    V. Dorin and P. Schlottmann, Phys. Rev. 47, 5095 (1993).Google Scholar
  30. 30.
    E. Arrigoni and G. C. Strinati, Phys. Rev. Lett. 71, 3178 (1993).Google Scholar
  31. 31.
    H. Hasegawa, J. Phys. Cond. Matter. 1, 9325 (1989)Google Scholar
  32. 32.
    H. Hasegawa, Phys. Rev. B 41, 9168 (1990).Google Scholar
  33. 33.
    S. Inagaki and R. Kubo, Int. J. Mag. 4, 139 (1973).Google Scholar
  34. 34.
    H. Hasegawa, Prog. Theor. Phys. Suppl. 101, 463 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Hideo Hasegawa
    • 1
  1. 1.Department of PhysicsTokyo Gakugei University, KoganeiTokyoJapan

Personalised recommendations