Skip to main content
Log in

Representation of the Resonance of a Relativistic Quantum Field Theoretical Lee–Friedrichs Model in Lax–Phillips Scattering Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The quantum mechanical description of the evolution of an unstable system defined initially as a state in a Hilbert space at a given time does not provide a semigroup (exponential) decay, law. The Wigner–Weisskopf survival amplitude, describing reversible quantum transitions, may be dominated by exponential type decay in pole approximation at times not too short or too long, but, in the two channel case, for example, the pole residues are not orthogonal, and the evolution does riot correspond to a semigroup (experiments on the decay of the neutral K-meson system strongly support the semigroup evolution postulated, by Lee, Oehme and Yang, and Yang and Wu). The scattering theory of Lax and Phillips, originally developed for classical wave equations, has been recently extended to the description of the evolution of resonant states in the framework of quantum theory. The resulting evolution law of the unstable system is that of a semigroup, and the resonant state is a well-defined function in the Lax–Phillips Hilbert space. In this paper we apply this theory to a relativistically covariant quantum field theoretical form of the (soluble) Lee model. We construct the translation representations with the help of the wave operators, and show that the resulting Lax–Phillips S-matrix is an inner function (the Lax–Phillips theory is essentially a theory of translation invariant subspaces). In the special case that the S-matrix is a rational inner function, we obtain the resonant state explicitly and analyze its particle (V, N, θ) content. If there is an exponential bound, the general case differs only by a so-called trivial inner factor, which does not change the complex spectrum, but may affect the wave function of the resonant state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. D. Lax and R. S. Phillips, Scattering Theory (Academic Press, New York, 1967).

    Google Scholar 

  2. C. Flesia and C. Piron, Helv. Phys. Acta 57, 697 (1984).

    Google Scholar 

  3. L. P. Horwitz and C. Piron, Helv. Phys. Acta 66, 694 (1993).

    Google Scholar 

  4. E. Eisenberg and L. P. Horwitz, in Advances in Chemical Physics, vol. XCIX, I. Progogine and S. Rice, eds. (Wiley, New York, 1997), p. 245.

    Google Scholar 

  5. Y. Strauss, L. P. Horwitz, and E. Eisenberg, hep-th/9709036, submitted for publication.

  6. C. Piron, Foundations of Quantum Physics (Benjamin/Cummings, Reading, 1976).

    Google Scholar 

  7. V. F. Weisskopf and E. P. Wigner, Z. Phys. 63, 54 (1930); 65, 18 (1930).

    Google Scholar 

  8. L. P. Horwitz, J. P. Marchand, and J. LaVita, J. Math. Phys. 12, 2537 (1971); D. Williams, Comm. Math. Phys. 21, 314 (1971).

    Google Scholar 

  9. L. P. Horwitz and J. P. Marchand, Helv. Phys. Acta 42, 1039 (1969).

    Google Scholar 

  10. L. P. Horwitz and J. P. Marchand, Rocky Mountain J. Math. 1, 225 (1971).

    Google Scholar 

  11. B. Winstein et al., Results from the Neutral Kaon Program at Fermilab's Meson Center Beamline, 1985–1997, FERMILAB-Pub-97/087-E, publised on behalf of the E731, E773 and E799 Collaborations, Fermi National Accelerator laboratoy, P. O. Box 500, Batavia, Illinois 60510.

  12. T. D. Lee, R. Oehme, and C. N. Yang, Phys. Rev. 106, 340 (1957).

    Google Scholar 

  13. T. T. Wu and C. N. Yang, Phys. Rev. Lett. 13, 380 (1964).

    Google Scholar 

  14. L. P. Horwitz and L. Mizrachi, Nuovo Cimento A 21, 625 (1974); E. Cohen and L. P. Horwitz, hep-th_9808030; hep-ph_9811332, submitted for publication.

    Google Scholar 

  15. W; Baumgartel, Math. Machr. 69, 107 (1975); L. P. Horwitz and I. M. Sigal, Helv. Phys. Acta 51, 685 (1978); G. Parravicini, V. Gorini, and E. C. G. Sudarshan, J. Math. Phys. 21, 2208 (1980); A. Bohm, Quantum Mehcanics: Foundations and Applications (Springer, Berlin, 1986); A. Bohm, M. Gadella, and G. B. Mainland, Am. J. Phys. 57, 1105 (1989); T. Bailey and W. C. Schieve, Nuovo Cimento A 47, 231 (1978).

    Google Scholar 

  16. I. P. Cornfield, S. V. Formin, and Ya. G. Sinai, Ergodic Theory (Springer, Berlin, 1982).

    Google Scholar 

  17. Y. Fournès and I. E. Segal, Trans. Am. Math. Soc. 78, 385 (1955).

    Google Scholar 

  18. M. Rosenblum and J. Rovnyak, Hardya Classes and Operator Theory (Oxford University Press, New York, 1985).

    Google Scholar 

  19. L. P. Horwitz, Found Phys. 25, 39 (1995); see also D. Cocolicchio, Phys. Rev. D 57, 7251 (1998).

    Google Scholar 

  20. E. C. G. Stueckelberg, Helv. Phys. Acta 14, 322, 588 (1941); J. Schwinger, Phys. Rev. 82, 664 (1951); R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948); Phys. Rev. 80, 440 (1950); L. P. Horwitz and C. Piron, Helv. Phys. Acta 46, 316 (1973); R. Fanchi, Phys. Rev. D 20, 3108 (1979); A. Kyprianides, Phys. Rep. 155, 1 (1986), and references therein.

    Google Scholar 

  21. I; Antoniou, M. Gadella, I. Prigogine, and P. P. Pronko, J. Math. Phys. 39, 2995 (1998).

    Google Scholar 

  22. N. Shnerb and L. P. Horwitz, Phys. Rev. A 48, 4068 (1993); L. P. Horwitz and N. Shnerb, Found. Phys. 28, 1509 (1998).

    Google Scholar 

  23. For example, J. R. Taylor, Scattering Theory (Wiley, New York, 1972); R. J. Newton, Scattering Theory of Particles and Waves (McGraw-Hill, New York, 1976).

    Google Scholar 

  24. K. Hoffman, Banach Spaces of Analytic Functions (Prentice Hall, Englewood Cliffs, NJ, 1962).

    Google Scholar 

  25. T. D. Lee, Phys. Rev. 95, 1329 (1954); K. O. Friedrichs, Comm. Pure 6 Appl. Math. 1, 361 (1950), this result was originally conjectured by C. Piron (personal communication).

    Google Scholar 

  26. Y. Strauss and L. P. Horwitz, in preparation.

  27. H. Lehmann, K. Symanzik, and W. Zimmerman, Nuovo Cim. 1, 1425 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strauss, Y., Horwitz, L.P. Representation of the Resonance of a Relativistic Quantum Field Theoretical Lee–Friedrichs Model in Lax–Phillips Scattering Theory. Foundations of Physics 30, 653–694 (2000). https://doi.org/10.1023/A:1003780726075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003780726075

Keywords

Navigation