Advertisement

Foundations of Physics

, Volume 30, Issue 12, pp 2135–2150 | Cite as

Giant Nonlinear Absorption by an Ensemble of Metallic Grains

  • Y. M. Galperin
  • K. A. Chao
Article

Abstract

We have investigated the nonlinear low-frequency microwave absorption of an ensemble of small metallic grains. Earlier Zhou et al. [Phys. Rev. Lett. 77, 1958 (1996)] have proved that linear absorption by such a system is due to a mesoscopic relaxation mechanism for which important contribution is from the grains with small level spacings between the ground state and the first excited state. Here we have shown further that such grains are anomalously sensitive to the field amplitude and the distribution of level spacings. Since such a behavior depends on external magnetic field, we expect the appearance of a giant nonlinear magnetoresistance, as well as a very strong temperature dependence of the nonlinear microwave conductivity.

Keywords

Magnetic Field Microwave Excited State External Magnetic Field Field Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    L. P. Gorkov and G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 48, 1407 (1965) [Sov. Phys. JETP 21, 940 (1965)]Google Scholar
  2. 2.
    B. I. Shklovskii, Pisma Zh. Eksp. Teor. Fiz. 36, 287 (1982) [JETP Lett. 36, 352 (1982)].Google Scholar
  3. 3.
    J. Perenboom, P. Wyder, and F. Meier, Phys. Rep. 78, 137 (1981).Google Scholar
  4. 4.
    G. Carr, S. Percowitz, and N. Tanner, in Far Infrared Properties of Inhomogeneous Materials, Vol. 15, K. Button, ed. (Academic, Orlando, 1984).Google Scholar
  5. 5.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, Oxford, 1977).Google Scholar
  6. 6.
    M. Pollak and T. H. Geballe, Phys. Rev. 122, 1742 (1961).Google Scholar
  7. 7.
    F. Zhou, B. Spivak, N. Taniguchi, and B. L. Altshuler, Phys. Rev. Lett. 77, 1958 (1996).Google Scholar
  8. 8.
    M. L. Mehta, Random Matrices (Academic, New York, 1991).Google Scholar
  9. 9.
    M. Reizer and A. Sergeev, Zh. Eksp. Teor. Fiz. 90, 1056 (1986) [Sov. Phys. JETP 63, 616 (1986)].Google Scholar
  10. 10.
    B. Spivak, F. Zhou, and Z. Beal-Monod, Phys. Rev. B 51, 13 2226 (1995).Google Scholar
  11. 11.
    Yu. M. Galperin, Zh. Eksp. Teor. Fiz. 84, 1386 (1983) [Sov. Phys. JETP 58, 1023 (1983)].Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Y. M. Galperin
    • 1
    • 2
    • 3
  • K. A. Chao
    • 4
  1. 1.Centre for Advanced StudyOsloNorway
  2. 2.Department of PhysicsUniversity of OsloOsloNorway
  3. 3.Division of Solid State PhysicsIoffe Institute of the Russian Academy of SciencesSt. PetersburgRussia
  4. 4.Division of Solid State Theory, Department of PhysicsLund UniversityLundSweden

Personalised recommendations