Skip to main content
Log in

Molecular-Dynamics Approach to the Magnetic Structure of Competing Magnetic Alloys: Fe-Cr Alloys

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A molecular dynamics (MD) approach which determines automatically the complex magnetic structures in itinerant electron systems is applied to Fe-Cr alloys with use of 250 atoms in a MD unit cell (5×5×5 bcc lattice). It is demonstrated that the Fe-Cr alloys show various complex magnetic structures due to competing interactions: the collinear ferromagnetism (F) of matrix Fe with antiparallel Cr moments beyond 80 at.% Fe, the coexistence of non-collinear structure of Cr and collinear F of Fe between 50 and 75 at.% Fe, the coexistence of broken antiferromagnetism (AF) of Cr and the F of Fe between 25 and 45 at.% Fe, the coexistence of F of Fe and antiferromagnetic long-range order of Cr around 20 at.% Fe, the AF of Cr matrix with non-collinear Fe moments (spin-glass like structure) between 5 and 15 at.% Fe, and the AF below 5 at.% Fe. In the concentration region between 5 and 20 at.% Fe, ferromagnetic Fe pairs which are stabilized with different amplitudes of local moments are found. The magnetic phase diagram and calculated magnetic moments are shown to be consistent with the neutron, Mössbauer, and photoemission experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. Friedel, Nuovo Cimento 10, Suppl. 4, 287 (1958).

    Google Scholar 

  2. B. Loegel, J. Phys. F: Metal Phys. 5, 497 (1975).

    Google Scholar 

  3. V. E. Rode, S. A. Finkelberg, and A. I. Lyalin, J. of Mag. Mat. Mag. 31- 34, 293 (1983).

    Google Scholar 

  4. S. K. Burke and B. D. Rainford, J. Phys. F: Met. Phys. 13, 441 (1983); 8, L239 (1978).

    Google Scholar 

  5. S. M. Dubiel, Ch. Sauer, and W. Zinn, Phys. Rev. B 32, 2745 (1985).

    Google Scholar 

  6. S. K. Burke, R. Cywinski, J. R. Davis, and B. D. Rainford, J. Phys. F: Met. Phys. 13, 451 (1983).

    Google Scholar 

  7. S. K. Burke and B. D. Rainford, J. Phys. F: Met. Phys. 13, 471 (1983).

    Google Scholar 

  8. S. M. Dubiel, Ch. Sauer, and W. Zinn, Phys. Rev. B 30, 6285 (1984).

    Google Scholar 

  9. S. M. Dubiel, Phys. Stat. Sol. (b) 140, 191 (1987).

    Google Scholar 

  10. J. Kortright, Phys. Rev. B 61, 64 (2000), and private communications, (1999).

    Google Scholar 

  11. C. G. Shull and M. K. Wilkinson, Phys. Rev. 97, 304 (1955).

    Google Scholar 

  12. F. Kajzar and G. Parette, Phys. Rev. B 22, 5471 (1980); 20, 2002 (1979).

    Google Scholar 

  13. A. T. Aldred, B. D. Rainford, J. S. Kouvel, and T. J. Hicks, Phys. Rev. B 14, 228 (1976).

    Google Scholar 

  14. G. H. Lander and L. Heaton, J. Phys. Chem. Solids 32, 427 (1971).

    Google Scholar 

  15. M. Shiga and Y. Nakamura, J. Phys. Soc. Jpn. 49, 528 (1980).

    Google Scholar 

  16. T. Cey and N. Kunitomi, J. Phys. Soc. Jpn. 51, 3073 (1982).

    Google Scholar 

  17. G. E. Bacon, Acta Crystallogr. 14, 823 (1961).

    Google Scholar 

  18. G. Shirane and W. J. Takei, J. Phys. Soc. Jpn. 17 Supple B-III, 35 (1962).

    Google Scholar 

  19. S. A. Werner, A. Arrot, and H. Kendrick, Phys. Rev. 155, 528 (1967).

    Google Scholar 

  20. Y. Ishikawa, S. Hoshino, and Y. Endoh, J. Phys. Soc. Jpn. 22, 1221 (1967).

    Google Scholar 

  21. I. R. Herbert, P. E. Clerk, and G. V. H. Wilson, J. Phys. Chem. Solids 33, 979 (1972).

    Google Scholar 

  22. M. M. Newman and K. W. Stevens, Proc. Phys. Soc. 74, 290 (1959).

    Google Scholar 

  23. Y. Ishikawa, R. Tournir, and J. F. Fillipi, J. Phys. Chem. Solid 26, 1727 (1965).

    Google Scholar 

  24. M. B. Salamon and F. J. Feigel, J. Phys. Chem. Solid 29, 1443 (1968).

    Google Scholar 

  25. J. Friedel and L. E. Hedman, J. de Phys. 39, 1225 (1978).

    Google Scholar 

  26. B. D. Shull and P. A. Beck, AIP Conf. Proc. 24, 95 (1975).

    Google Scholar 

  27. J. O. Strom-Olsen, D. F. Wilford, S. K. Burke, and B. D. Rainford, J. Phys. F 9, L95 (1979).

    Google Scholar 

  28. S. M. Shapiro, C. R. Fincher, Jr., A. H. Palumbo, and R. D. Parks, J. Appl. Phys. 52, 1729 (1981); Phys. Rev. B 24, 6661 (1981).

    Google Scholar 

  29. P. Soven, Phys. Rev. 156, 809 (1967).

    Google Scholar 

  30. B. Veliky, S. Kirkpatrick, and H. Ehrenreich, Phys. Rev. 175, 747 (1968).

    Google Scholar 

  31. H. Hasegawa and J. Kanamori, J. Phys. Soc. Jpn. 31, 382 (1971); 33, 1607 (1972).

    Google Scholar 

  32. G. Frollani, F. Menzinger, and F. Sacchetti, Phys. Rev. B 11, 2030 (</del>1975).

    Google Scholar 

  33. H. Hasegawa, J. Phys. Soc. Jpn. 50, 802 (1981).

    Google Scholar 

  34. T. Jo, J. Phys. Soc. Jpn. 51, 794 (1982).

    Google Scholar 

  35. Y. Kakehashi, Phys. Rev. B 35, 4973 (1987).

    Google Scholar 

  36. Y. Kakehashi, S. Akbar, and N. Kimura, Phys. Rev. B 57, 8354 (1998).

    Google Scholar 

  37. Y. Kakehashi, S. Akbar, and N. Kimura, in Itinerant Electron Magnetism: Fluctuation Effects 6 Critical Phenomena, Vol. 55 of NATO Science Series 3: High Technology, D. Wagner, W. Brauneck, and A. Solontsov, eds. (Kluwer, Academic, The Netherlands, 1998), pp. 193_228.

    Google Scholar 

  38. S. Akbar, Y. Kakehashi, and N. Kimura, J. Phys.: Condens. Matter 10, 2081 (1998).

    Google Scholar 

  39. Y. Endoh and Y. Ishikawa, J. Phys. Soc. Jpn. 30, 1614 (1971).

    Google Scholar 

  40. M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).

    Google Scholar 

  41. J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963).

    Google Scholar 

  42. H. Hasegawa, J. Phys. F 13, 1915 (1983).

    Google Scholar 

  43. J. Hubbard, Phys. Rev. B 19, 2626 (1979); 20, 4584 (1979); 23, 597 (1981).

    Google Scholar 

  44. Y. Kakehashi, Phys. Rev. B 34, 3243 (1986).

    Google Scholar 

  45. S. Nosé, J. Chem. Phys. 81, 511 (1984).

    Google Scholar 

  46. W. G. Hoover, Computational Statistical Mechanics (Elsevier, Amsterdam, 1991).

    Google Scholar 

  47. R. Haydock, V. Heine, and M. J. Kelly, J. Phys. C 8, 591 (1975).

    Google Scholar 

  48. V. Heine, R. Haydock, and M. J. Kelly, Solid State Physics 35, 1 (1980).

    Google Scholar 

  49. R. Haydock and M. J. Kelly, Surf. Sci. 38, 139 (1973).

    Google Scholar 

  50. J. F. Janak, Phys. Rev. B 16, 255 (1977).

    Google Scholar 

  51. Y. Kakehashi, H. Al-Attar, and N. Kimura, Phys. Rev. B 59, 8664 (1999).

    Google Scholar 

  52. Y. Tsuchiya, T. Bitoh, S. Murayama, S. Chikazawa, and Y. Hamaguchi, J. Phys. Soc. Jpn. 65, 3289 (1996); Y. Tsuchiya, H. Nakamura, S. Murayama, K. Hoshi, Y. Shimojo, Y. Morii, and Y. Hamaguchi, Physica B 237- 238, 446 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, N., Kakehashi, Y. Molecular-Dynamics Approach to the Magnetic Structure of Competing Magnetic Alloys: Fe-Cr Alloys. Foundations of Physics 30, 2079–2100 (2000). https://doi.org/10.1023/A:1003741508020

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003741508020

Keywords

Navigation