Advertisement

Foundations of Physics

, Volume 30, Issue 12, pp 2079–2100 | Cite as

Molecular-Dynamics Approach to the Magnetic Structure of Competing Magnetic Alloys: Fe-Cr Alloys

  • N. Kimura
  • Y. Kakehashi
Article

Abstract

A molecular dynamics (MD) approach which determines automatically the complex magnetic structures in itinerant electron systems is applied to Fe-Cr alloys with use of 250 atoms in a MD unit cell (5×5×5 bcc lattice). It is demonstrated that the Fe-Cr alloys show various complex magnetic structures due to competing interactions: the collinear ferromagnetism (F) of matrix Fe with antiparallel Cr moments beyond 80 at.% Fe, the coexistence of non-collinear structure of Cr and collinear F of Fe between 50 and 75 at.% Fe, the coexistence of broken antiferromagnetism (AF) of Cr and the F of Fe between 25 and 45 at.% Fe, the coexistence of F of Fe and antiferromagnetic long-range order of Cr around 20 at.% Fe, the AF of Cr matrix with non-collinear Fe moments (spin-glass like structure) between 5 and 15 at.% Fe, and the AF below 5 at.% Fe. In the concentration region between 5 and 20 at.% Fe, ferromagnetic Fe pairs which are stabilized with different amplitudes of local moments are found. The magnetic phase diagram and calculated magnetic moments are shown to be consistent with the neutron, Mössbauer, and photoemission experiments.

Keywords

Local Moment Magnetic Alloy Magnetic Phase Diagram Itinerant Electron Photoemission Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. Friedel, Nuovo Cimento 10, Suppl. 4, 287 (1958).Google Scholar
  2. 2.
    B. Loegel, J. Phys. F: Metal Phys. 5, 497 (1975).Google Scholar
  3. 3.
    V. E. Rode, S. A. Finkelberg, and A. I. Lyalin, J. of Mag. Mat. Mag. 31- 34, 293 (1983).Google Scholar
  4. 4.
    S. K. Burke and B. D. Rainford, J. Phys. F: Met. Phys. 13, 441 (1983); 8, L239 (1978).Google Scholar
  5. 5.
    S. M. Dubiel, Ch. Sauer, and W. Zinn, Phys. Rev. B 32, 2745 (1985).Google Scholar
  6. 6.
    S. K. Burke, R. Cywinski, J. R. Davis, and B. D. Rainford, J. Phys. F: Met. Phys. 13, 451 (1983).Google Scholar
  7. 7.
    S. K. Burke and B. D. Rainford, J. Phys. F: Met. Phys. 13, 471 (1983).Google Scholar
  8. 8.
    S. M. Dubiel, Ch. Sauer, and W. Zinn, Phys. Rev. B 30, 6285 (1984).Google Scholar
  9. 9.
    S. M. Dubiel, Phys. Stat. Sol. (b) 140, 191 (1987).Google Scholar
  10. 10.
    J. Kortright, Phys. Rev. B 61, 64 (2000), and private communications, (1999).Google Scholar
  11. 11.
    C. G. Shull and M. K. Wilkinson, Phys. Rev. 97, 304 (1955).Google Scholar
  12. 12.
    F. Kajzar and G. Parette, Phys. Rev. B 22, 5471 (1980); 20, 2002 (1979).Google Scholar
  13. 13.
    A. T. Aldred, B. D. Rainford, J. S. Kouvel, and T. J. Hicks, Phys. Rev. B 14, 228 (1976).Google Scholar
  14. 14.
    G. H. Lander and L. Heaton, J. Phys. Chem. Solids 32, 427 (1971).Google Scholar
  15. 15.
    M. Shiga and Y. Nakamura, J. Phys. Soc. Jpn. 49, 528 (1980).Google Scholar
  16. 16.
    T. Cey and N. Kunitomi, J. Phys. Soc. Jpn. 51, 3073 (1982).Google Scholar
  17. 17.
    G. E. Bacon, Acta Crystallogr. 14, 823 (1961).Google Scholar
  18. 18.
    G. Shirane and W. J. Takei, J. Phys. Soc. Jpn. 17 Supple B-III, 35 (1962).Google Scholar
  19. 19.
    S. A. Werner, A. Arrot, and H. Kendrick, Phys. Rev. 155, 528 (1967).Google Scholar
  20. 20.
    Y. Ishikawa, S. Hoshino, and Y. Endoh, J. Phys. Soc. Jpn. 22, 1221 (1967).Google Scholar
  21. 21.
    I. R. Herbert, P. E. Clerk, and G. V. H. Wilson, J. Phys. Chem. Solids 33, 979 (1972).Google Scholar
  22. 22.
    M. M. Newman and K. W. Stevens, Proc. Phys. Soc. 74, 290 (1959).Google Scholar
  23. 23.
    Y. Ishikawa, R. Tournir, and J. F. Fillipi, J. Phys. Chem. Solid 26, 1727 (1965).Google Scholar
  24. 24.
    M. B. Salamon and F. J. Feigel, J. Phys. Chem. Solid 29, 1443 (1968).Google Scholar
  25. 25.
    J. Friedel and L. E. Hedman, J. de Phys. 39, 1225 (1978).Google Scholar
  26. 26.
    B. D. Shull and P. A. Beck, AIP Conf. Proc. 24, 95 (1975).Google Scholar
  27. 27.
    J. O. Strom-Olsen, D. F. Wilford, S. K. Burke, and B. D. Rainford, J. Phys. F 9, L95 (1979).Google Scholar
  28. 28.
    S. M. Shapiro, C. R. Fincher, Jr., A. H. Palumbo, and R. D. Parks, J. Appl. Phys. 52, 1729 (1981); Phys. Rev. B 24, 6661 (1981).Google Scholar
  29. 29.
    P. Soven, Phys. Rev. 156, 809 (1967).Google Scholar
  30. 30.
    B. Veliky, S. Kirkpatrick, and H. Ehrenreich, Phys. Rev. 175, 747 (1968).Google Scholar
  31. 31.
    H. Hasegawa and J. Kanamori, J. Phys. Soc. Jpn. 31, 382 (1971); 33, 1607 (1972).Google Scholar
  32. 32.
    G. Frollani, F. Menzinger, and F. Sacchetti, Phys. Rev. B 11, 2030 (</del>1975).Google Scholar
  33. 33.
    H. Hasegawa, J. Phys. Soc. Jpn. 50, 802 (1981).Google Scholar
  34. 34.
    T. Jo, J. Phys. Soc. Jpn. 51, 794 (1982).Google Scholar
  35. 35.
    Y. Kakehashi, Phys. Rev. B 35, 4973 (1987).Google Scholar
  36. 36.
    Y. Kakehashi, S. Akbar, and N. Kimura, Phys. Rev. B 57, 8354 (1998).Google Scholar
  37. 37.
    Y. Kakehashi, S. Akbar, and N. Kimura, in Itinerant Electron Magnetism: Fluctuation Effects 6 Critical Phenomena, Vol. 55 of NATO Science Series 3: High Technology, D. Wagner, W. Brauneck, and A. Solontsov, eds. (Kluwer, Academic, The Netherlands, 1998), pp. 193_228.Google Scholar
  38. 38.
    S. Akbar, Y. Kakehashi, and N. Kimura, J. Phys.: Condens. Matter 10, 2081 (1998).Google Scholar
  39. 39.
    Y. Endoh and Y. Ishikawa, J. Phys. Soc. Jpn. 30, 1614 (1971).Google Scholar
  40. 40.
    M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).Google Scholar
  41. 41.
    J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963).Google Scholar
  42. 42.
    H. Hasegawa, J. Phys. F 13, 1915 (1983).Google Scholar
  43. 43.
    J. Hubbard, Phys. Rev. B 19, 2626 (1979); 20, 4584 (1979); 23, 597 (1981).Google Scholar
  44. 44.
    Y. Kakehashi, Phys. Rev. B 34, 3243 (1986).Google Scholar
  45. 45.
    S. Nosé, J. Chem. Phys. 81, 511 (1984).Google Scholar
  46. 46.
    W. G. Hoover, Computational Statistical Mechanics (Elsevier, Amsterdam, 1991).Google Scholar
  47. 47.
    R. Haydock, V. Heine, and M. J. Kelly, J. Phys. C 8, 591 (1975).Google Scholar
  48. 48.
    V. Heine, R. Haydock, and M. J. Kelly, Solid State Physics 35, 1 (1980).Google Scholar
  49. 49.
    R. Haydock and M. J. Kelly, Surf. Sci. 38, 139 (1973).Google Scholar
  50. 50.
    J. F. Janak, Phys. Rev. B 16, 255 (1977).Google Scholar
  51. 51.
    Y. Kakehashi, H. Al-Attar, and N. Kimura, Phys. Rev. B 59, 8664 (1999).Google Scholar
  52. 52.
    Y. Tsuchiya, T. Bitoh, S. Murayama, S. Chikazawa, and Y. Hamaguchi, J. Phys. Soc. Jpn. 65, 3289 (1996); Y. Tsuchiya, H. Nakamura, S. Murayama, K. Hoshi, Y. Shimojo, Y. Morii, and Y. Hamaguchi, Physica B 237- 238, 446 (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • N. Kimura
    • 1
  • Y. Kakehashi
    • 1
  1. 1.Hokkaido Institute of Technology, Maeda, Teine-kuSapporoJapan

Personalised recommendations