Skip to main content
Log in

Casimir Energy in Astrophysics: Gamma-Ray Bursts from QED Vacuum Transitions

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Motivated by analogous applications to sonoluminescence, neutron stars mergers are examined in the context of Schwinger's dynamical Casimir effect. When the dielectric properties of the QED vacuum are altered through the introduction of dense matter, energy shifts in the zero-point fluctuations can appear as photon bursts at gamma-ray frequencies. The amount of radiation depends upon the properties and amount of matter in motion and the suddenness of the transition. It is shown that the dynamical Casimir effect can convert sufficient energy of neutron star mergers into gamma rays. Using information extracted from simulations of matter flow in neutron star mergers by Ruffert and Janka, we estimate that the total Casimir energy released can exceed 10 53 ergs in gamma-ray frequencies. The Casimir energy approach is capable of explaining the most energetic gamma-ray bursts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. Schwinger, Proc. Natl. Acad. Sci. USA 91, 6473 (1994); 90, 7285 (1993); 90, 4505 (1993); 90, 2105 (1993); 90, 958 (1993); 89, 11118 (1992); 89, 4091 (1992).

    Google Scholar 

  2. S. Liberati, M. Visser, F. Belgiorno, and D. W. Sciama, Phys. Rev. Lett. 83, 678 (1999).

    Google Scholar 

  3. S. Liberati, M. Visser, F. Belgiorno, and D. W. Sciama, quant-ph/9805031; quant-ph/ 9904013; quant-ph/9904018; quant-ph/9905034.

  4. I. Brevik, V. N. Marachevsky, and K. A. Milton, Phys. Rev. Lett. 82, 3948 (1999); K. A. Milton, and Y. Jack Ng, Phys. Rev. E 57, 5504 (1998); 55, 4207 (1997); K. Milton, “Casimir energy for a spherical cavity in a dielectric: Toward a model for sonolumines-cence?” in Quantum Field Theory Under the Influence of External Conditions, M. Bordag, ed. (Tuebner, Stuttgart, 1996), pp. 13–23.

    Google Scholar 

  5. C. E. Carlson, C. Molina-París, J. Pérez-Mercader, and Matt Visser, Phys. Lett. B 395, 76 (1997); Phys. Rev. D 56, 1262 (1997).

    Google Scholar 

  6. C. E. Carlson, T. Goldman, and J. Pérez-Mercader, Europhys. Lett. 36, 637 (1996).

    Google Scholar 

  7. S. Kulkarni et al., Nature 393, 35 (1998).

    Google Scholar 

  8. See e.g., C. Kouveliotou, Appl. J. (Suppl.) 92, 637 (1994).

    Google Scholar 

  9. S. Narayan, B. Paczinski, and T. Piran, Appl. J. 395, L83 (1992).

    Google Scholar 

  10. E. J. Schneid et al., Astron & Astrophs 255, L13 (1992); K. Hurley et al., Nature 372, 652 (1994).

    Google Scholar 

  11. C. Molina-París and M. Visser, Phys. Rev. D 56, 6629 (1997).

    Google Scholar 

  12. M. Ruffert, and H.-Th. Janka, astro-ph/9804132 and astro-ph/9809280; H.-Th. Janka, Th. Eberl, M. Ruffert, and C. L. Fryer, astro-ph/9908290.

  13. J. Gorosabel, A. J. Castro-Tirado, S. Brandt, and N. Lund, Astron. & Astrophys. 336, 57 (1998); A. Singh and M. Srednicki, Appl. J. 492, L29 (1998); R. Narayan and T. Piran, Mon. Not. Roy. Astron. Soc. 265, L65 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlson, C.E., Swanson, I.J. Casimir Energy in Astrophysics: Gamma-Ray Bursts from QED Vacuum Transitions. Foundations of Physics 30, 775–783 (2000). https://doi.org/10.1023/A:1003741111963

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003741111963

Keywords

Navigation