Advertisement

Foundations of Physics

, Volume 30, Issue 12, pp 2011–2031 | Cite as

Multi-Band Gutzwiller Wave Functions for Itinerant Ferromagnetism

  • Jörg Bünemann
  • Florian Gebhard
  • Werner Weber
Article

Abstract

Multi-band Gutzwiller-correlated wave functions reconcile the contrasting concepts of itinerant band electrons versus electrons localized in partially filled atomic shells. The approximate evaluation of these variational ground states becomes exact in the limit of large coordination number. The result allows the identification of quasi-particle band structures for correlated electron systems. As a first application, we summarize a study of itinerant ferromagnetism in a two-band model, thereby elucidating the co-operation of the Coulomb repulsion and the Hund's-rule exchange. Then, we present results of calculations for ferromagnetic nickel, using a realistic 18 spin-orbital basis of 4s, 4p and 3d valence electrons. Good agreement with the experimental ground-state properties of nickel is obtained. In particular, the quasi-particle energy bands agree much better with the photo-emission and Fermi surface data than the band structure obtained from spin-density functional theory. Finally, we present results for the variational spinwave dispersion for our two-band model.

Keywords

Atomic Shell Correlate Electron System Rule Exchange Variational Ground Large Coordination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. C. Slater, Phys. Rev. 49, 537 (1936); ibid., 931 (1936).Google Scholar
  2. 2.
    E. C. Stoner, Proc. Roy. Soc. A 165, 372 (1938); for early reviews, see J. C. Slater, Rev. Mod. Phys. 25, 199 (1953) and E. P. Wohlfarth, Rev. Mod. Phys. 25, 211 (1953).Google Scholar
  3. 3.
    J. H. van Vleck, Rev. Mod. Phys. 25, 220 (1953).Google Scholar
  4. 4.
    V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated Electronic Properties of Metals (Pergamon, New York, 1978).Google Scholar
  5. 5.
    W. Nolting, W. Borgieł, V. Dose, and Th. Fauster, Phys. Rev. B 40, 5015 (1989). W. Borgieł and W. Nolting, Z. Phys. B 78, 241 (1990).Google Scholar
  6. 6.
    H. Hasegawa, J. Phys. Soc. Jpn 66, 3522 (1997); Phys. Rev. B 56, 1196 (1997). R. Frésard and G. Kotliar, Phys. Rev. B 56, 12909 (1997).Google Scholar
  7. 7.
    Th. Obermeier, Th. Pruschke, and J. Keller, Phys. Rev. B 56, 8479 (1997). Th. Maier, M. B. Zölfl, Th. Pruschke, and J. Keller, Euro. Phys. J. B 7, 377 (1999). M. B. Zölfl, Th. Pruschke, J. Keller, A. I. Poteryaev, I. A. Nekrasov, and V.I. Anisimov, Phys. Rev. B 61, 12810 (2000).Google Scholar
  8. 8.
    D. Vollhardt, N. Blümer, K. Held, M. Kollar, J. Schlipf, M. Ulmke, and J. Wahle, Adv. Solid-State Phys. 38, 383 (1999). I. A. Nekrasov, K. Held, N. Blümer, A. I. Poteryaev, V. I. Anisimov, D. Vollhardt, preprint cond-mat/0005207 (2000).Google Scholar
  9. 9.
    J. Bünemann, W. Weber, and F. Gebhard, Phys. Rev. B 57, 6896 (1998).Google Scholar
  10. 10.
    M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).Google Scholar
  11. 11.
    M. C. Gutzwiller, Phys. Rev. A 134, 923 (1964); Phys. Rev. A 137, 1726 (1965).Google Scholar
  12. 12.
    J. Hubbard, Proc. Roy. Soc. London Ser. A 276, 238 (1963); Proc. Roy. Soc. London Ser. A 277, 237 (1964).Google Scholar
  13. 13.
    J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).Google Scholar
  14. 14.
    G. Stollhoff and P. Fulde, J. Chem. Phys. 73, 4548 (1980). G. Stollhoff and P. Thalmeier, Z. Phys. B 43, 13 (1981). A. M. OleŚ and G. Stollhoff, Phys. Rev. B 29, 314 (1984). For further details on the “local ansatz” technique, see P. Fulde, Electron Correlations in Molecules and Solids, Springer Series in Solid-State Sciences 100 (Springer, Berlin, 1991).Google Scholar
  15. 15.
    D. Baeriswyl and K. Maki, Phys. Rev. B 31, 6633 (1985). D. Baeriswyl, J. Carmelo, and K. Maki, Synth. Met. 21, 271 (1987).Google Scholar
  16. 16.
    D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984).Google Scholar
  17. 17.
    K. A. Chao and M. C. Gutzwiller, J. Appl. Phys. 42 1420 (1971). K. A. Chao, Phys. Rev. B 4 4034 (1971); Phys. Rev. B 4 1088 (1973); J. Phys. C 7 127 (1974).Google Scholar
  18. 18.
    P. Fazekas, Lecture Notes on Electron Correlation and Magnetism, Series in Mod. Cond. Matt. Phys. 5 (World Scientific, Singapore, 1999), gives an introduction to the theory of ferromagnetism, and a concise description and some applications of the Gutzwiller approximation.Google Scholar
  19. 19.
    W. Metzner and D. Vollhardt, Phys. Rev. Lett. 59, 121 (1987); Phys. Rev. B 37, 7382 (1988).Google Scholar
  20. 20.
    F. Gebhard and D. Vollhardt, Phys. Rev. Lett. 59, 1472 (1987); Phys. Rev. B 38, 6911 (1988).Google Scholar
  21. 21.
    W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).Google Scholar
  22. 22.
    For a review, see F. Gebhard, The Mott Metal-Insulator Transition (Springer, Berlin, 1997).Google Scholar
  23. 23.
    F. Gebhard, Phys. Rev. B 41, 9452 (1990).Google Scholar
  24. 24.
    J. Bünemann and W. Weber, Phys. Rev. B 55, 4011 (1997).Google Scholar
  25. 25.
    J. Bünemann, Eur. Phys. J. B 4, 29 (1998).Google Scholar
  26. 26.
    J. Bünemann, F. Gebhard, and W. Weber, J. Phys. Cond. Matt. 8, 7343 (1997).Google Scholar
  27. 27.
    J. Bünemann, preprint cond-mat/0005154 (2000).Google Scholar
  28. 28.
    S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals, Pure and Applied Physics 33 (Academic, New York, 1970).Google Scholar
  29. 29.
    W. Eberhardt and E. W. Plummer, Phys. Rev. B 21, 3245 (1980).Google Scholar
  30. 30.
    M. Dixon, F. E. Hoare, T. M. Holden, and D. E. Moody, Proc. R. Soc. A 285, 561 (1965).Google Scholar
  31. 31.
    J. Callaway in Physics of Transition Metals, P. Rhodes, ed. (Conf. Ser. Notes 55, Inst. of Physics, Bristol, 1981), p. 1.Google Scholar
  32. 32.
    M. Donath, Surface Science Reports 20, 251 (1994).Google Scholar
  33. 33.
    K.-P. Kämper, W. Schmitt, and G. Güntherodt, Phys. Rev. B 42, 10696 (1990).Google Scholar
  34. 34.
    H. A. Mook, Phys. Rev. 148, 495 (1966).Google Scholar
  35. 35.
    R. Raue, H. Hopster, and R. Clanberg, Phys. Rev. Lett. 50, 1623 (1983).Google Scholar
  36. 36.
    C. S. Wang and J. Callaway, Phys. Rev. B 15, 298 (1977).Google Scholar
  37. 37.
    E. P. Wohlfahrt in Handbook of Magnetic Materials 1, E. P. Wohlfarth, ed. (North Holland, Amsterdam, 1980).Google Scholar
  38. 38.
    D. C. Tsui, Phys. Rev. 164, 561 (1967).Google Scholar
  39. 39.
    O. Jepsen, J. Madsen, and O. K. Andersen, Phys. Rev. B 26, 2790 (1982).Google Scholar
  40. 40.
    J. F. Cooke, J. W. Lynn, and H. L. Davis, Phys. Rev. B 21, 4118 (1980).Google Scholar
  41. 41.
    A. Liebsch, Phys. Rev. B 23, 5203 (1981).Google Scholar
  42. 42.
    J. Bünemann, F. Gebhard, and W. Weber, in preparation.Google Scholar
  43. 43.
    P. Heimann, F. J. Himpsel, and D. E. Eastman, Solid State Comm. 39, 219 (1981).Google Scholar
  44. 44.
    F. J. Himpsel, J. A. Knapp, and D. E. Eastman, Phys. Rev. B 19, 2919 (1979).Google Scholar
  45. 45.
    A. Messiah, Quantum Mechanics, 3rd printing (North Holland, Amsterdam, 1965).Google Scholar
  46. 46.
    R. P. Feynman, Statistical Mechanics, Frontiers in Physics 36 (Benjamin, Reading, 1972).Google Scholar
  47. 47.
    R. D. Lowde and C. G. Windsor, Adv. Phys. 19, 813 (1970).Google Scholar
  48. 48.
    See, e.g., S. V. Halilov, H. Eschrig, A. Y. Perlov, and P. M. Oppeneer, Phys. Rev. B 58, 293 (1998).Google Scholar
  49. 49.
    K. Chen, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B 48, 3249 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Jörg Bünemann
    • 1
  • Florian Gebhard
    • 1
  • Werner Weber
    • 2
  1. 1.Fachbereich PhysikPhilipps-Universität MarburgMarburgGermany
  2. 2.Institut für PhysikUniversität DortmundDortmundGermany

Personalised recommendations