Skip to main content
Log in

Dynamically Generated Inertia

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A (Higgs vacuum)–(spacetime geometry) reciprocity principle is proposed and its consequences are explored. While it has been established that configurations of the spacetime metric tensor field, associated with acceleration with respect to local inertial frames, cause the vacuum to become thermalized, it is asserted that the converse is also possible. An appropriate thermal vacuum, through dynamical mass generation, can cause particles to propagate in a spacetime with a Minkowski metric, as if they were in a spacetime with a non-Minkowski metric. The two points of view are equivalent and interchangeable. Invoking the reciprocity principle in the case of the Unruh effect in an accelerated frame, a mechanism is analyzed whereby in the context of the minimal standard model a gradient in the vacuum expectation value of the Higgs field in the direction of acceleration produces an effective inertial force on an accelerated material body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

    Google Scholar 

  2. W. Israel, Phys. Lett. A 57, 107 (1976).

    Google Scholar 

  3. H. Umezawa and Y. Takahashi, Collective Phenomena 2, 55 (1975); H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo Field Dynamics and Condensed States (North-Holland, Amsterdam, 1981).

    Google Scholar 

  4. W. Rindler, Essential Relativity (Springer, New York, 1977).

    Google Scholar 

  5. M. D. Kruskal, Phys. Rev. 119, 1743 (1960); G. Szekeres, Publ. Mat. Debrecen 7, 285 (1960).

    Google Scholar 

  6. P. C. W. Davies, J. Phys. A 8, 609 (1975).

    Google Scholar 

  7. W. G. Unruh, Phys. Rev. D 14, 870 (1976).

    Google Scholar 

  8. W. Moreau, R. Neutze, and D. K. Ross, Am. J. Phys. 62, 1037 (1994).

    Google Scholar 

  9. I. Newton, Principia Mathematica Philosophiae Naturalis (1686) (reprinted by University of California Press, Berkeley, California, 1934); G. Berkeley, The Principles of Human Knowledge, paragraphs 111-117 (1710); De Motu (1726); E. Mach, Conservation of Energy, note No. 1 (1872) (reprinted by Open Court, LaSalle, Illinois, 1911); The Science of Mechanics (1883) (reprinted by Open Court, LaSalle, Illinois, 1902), Chap. II, Sec. VI; H. Weyl, Naturwiss. 12, 197 (1924); D. W. Sciama, Sci. Amer. 196, 99 (1957); The Unity of the Universe (Anchor, New York, 1961), Sec. 21.12; C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961); C. W. Misner, K. S. Thorpe and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973), pp. 543_549; H. Liu and B. Mashhoon, Ann. Phys. 4, 1 (1995).

    Google Scholar 

  10. J. A. Wheeler, “View that the distribution of mass and energy determines the metric,” in Onzième Conseil de Physique Solvay: La Structure et l'évolution de l'univers (Éditions Stoops, Brussels, 1959); Rev. Mod. Phys. 33, 63 (1961); “Mach's principle as boundary condition for Einstein's equations,” in Gravitation and Relativity, H.-Y. Chiu and W. F. Hoffman, eds. (Benjamin, New York, 1964); P. A. M. Dirac, Phys. Rev. 114, 924 (1959); R. F. Baierlein, D. Sharp, and J. A. Wheeler, Phys. Rev. 126, 1864 (1962); R. Arnowitt, S. Deser, and C. W. Misner, in Gravitation, L. Witten, ed. (Wiley, New York, 1962); C. W. Misner, Phys. Rev. 186, 1319 (1969); R. Gowdy, Phys Rev. Lett. 27, 286 (1971); K. Kuchař, Phys. Rev. D 4, 955 (1971); J. Math. Phys. 13, 768 (1972); J. W. York, Phys. Rev. Lett. 26, 1656 (1971); Phys. Rev. Lett. 28, 1082 (1972); J. Math. Phys. 14, 456 (1973).

    Google Scholar 

  11. B. Haisch, A. Rueda, and H. E. Puthoff, Phys. Rev. A 49, 678 (1994).

    Google Scholar 

  12. M. Sher, Phys. Rep. 179, 273 (1989).

    Google Scholar 

  13. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco,1973), Chap. 6.

    Google Scholar 

  14. T. H. Boyer, Phys. Rev. D 21, 2137 (1980).

    Google Scholar 

  15. S. Hacyan, A. Sarmiento, G. Cocho, and F. Soto, Phys. Rev. D 32, 914 (1985).

    Google Scholar 

  16. L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974).

    Google Scholar 

  17. E. W. Kolb and M. S. Turner, The Early Universe (Addison–Wesley, Reading, MA, 1990), pp. 198-199.

    Google Scholar 

  18. P. Ramond, Field Theory: A Modern Primer, 2nd ed. (Addison-Wesley, Reading MA, 1989), Chap. 4.

    Google Scholar 

  19. S. Wolfram, Mathematica, 2nd ed. (Addison-Wesley, Reading, MA, 1991), pp. 576-577.

    Google Scholar 

  20. ”Review of particle properties,” Phys. Rev. D 45 (1992).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreau, W. Dynamically Generated Inertia. Foundations of Physics 30, 631–651 (2000). https://doi.org/10.1023/A:1003728709237

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003728709237

Keywords

Navigation