Skip to main content
Log in

From Time Inversion to Nonlinear QED

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In Minkowski flat space-time, it is perceived that time inversion is unitary rather than antiunitary, with energy being a time vector changing sign under time inversion. The Dirac equation, in the case of electromagnetic interaction, is not invariant under unitary time inversion, giving rise to a “Klein paradox.” To render unitary time inversion invariance, a nonlinear wave equation is constructed, in which the “Klein paradox” disappears. In the case of Coulomb interaction, the revised nonlinear equation can be linearized to give energy solutions for Hydrogen-like ions without singularity when nuclear number Z>137, showing a reversed energy order pending for experimental tests such as Zeeman effects. In non-relativistic limit, this nonlinear equation reduces to nonlinear Schrödinger equation with soliton-like solutions. Moreover, particle conjugation and electron-proton scattering with a nonsingular current-potential interaction are discussed. Finally the explicit form of gauge function is found, the uniqueness of Lorentz gauge is proven and the Lagrangian density of quantum electrodynamics (QED) is revised as well. The implementation of unitary time inversion leads to the ultimate derivation of nonlinear QED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. P. Wigner, Nachr. Akad. Wiss. Göttingen, Math.-Physik, 546 (1932).

  2. E. P. Wigner, Group Theory (Academic, New York, 1959).

    Google Scholar 

  3. E. P. Wigner, Symmetries and Reflections (Indiana University Press, Bloomington, 1967).

    Google Scholar 

  4. A. Einstein, The Principle of Relativity (Dover, New York, 1952).

    Google Scholar 

  5. P. A. M. Dirac, Proc. Roy. Soc. A117, 610 (1928); A118, 351 (1928).

    Google Scholar 

  6. O. Klein, Z. Phys. 53, 157 (1929).

    Google Scholar 

  7. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw–Hill, New York, 1964).

    Google Scholar 

  8. P. Zeeman, Phil. Mag. (5) 43, 226 (1897); (5) 44, 55, 255 (1897).

    Google Scholar 

  9. H. A. Lorentz, The Theory of Electrons (Dover, New York, 1952).

    Google Scholar 

  10. P. A. M. Dirac, Spinors in Hilbert Space (Plenum, New York, 1974).

    Google Scholar 

  11. P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, London, 1958).

    Google Scholar 

  12. H. Minkowski, Ann. Phys. Lpz. 47, 927 (1915).

    Google Scholar 

  13. P. A. M. Dirac, Proc. Roy. Soc. A126, 360 (1930).

    Google Scholar 

  14. C. D. Anderson, Science 76, 238 (1932); Phys. Rev. 43, 491 (1933).

    Google Scholar 

  15. W. Greiner, Relativistic Quantum Mechanics (Springer, Berlin, 1990).

    Google Scholar 

  16. W. Greiner, B. Muller, and J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer, Berlin, 1985).

    Google Scholar 

  17. G. N. Lewis and F. H. Spedding, Phys. Rev. 43, 964 (1933).

    Google Scholar 

  18. F. H. Spedding, C. D. Shane, and N. S. Grace, Phys. Rev. 44, 58 (1933).

    Google Scholar 

  19. F. Paschen, Ann. Phys. (Leipzig) 82, 692 (1926).

    Google Scholar 

  20. F. Paschen and E. Back, Ann. Phys. (Leipzig) 39, 897 (1912); 40, 960 (1913).

    Google Scholar 

  21. H. E. White, Introduction to Atomic Spectra (McGraw–Hill, New York, 1934).

    Google Scholar 

  22. H. G. Kuhn, Atomic Spectra (Academic, New York, 1962).

    Google Scholar 

  23. R. P. Feynman, Phys. Rev. 76, 749 (1949); 76, 769 (1949).

    Google Scholar 

  24. N. F. Mott, Proc. Roy. Soc. A124, 426 (1929); A135, 429 (1932).

    Google Scholar 

  25. R. W. McAllister and R. Hofstadter, Phys. Rev. 102, 851 (1956).

    Google Scholar 

  26. R. N. Cahn and G. Goldhaber, The Experimental Foundations of Particle Physics (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  27. J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields (McGraw–Hill, New York, 1965).

    Google Scholar 

  28. I. J. R. Aitchison and A. J. G. Hey, Gauge Theories in Particle Physics (Adam Hilger, Bristol, 1982).

    Google Scholar 

  29. Asim O. Barut, Alwyn van der Merwe, and Jean-Pierre Vigier, eds., Quantum, Space and Time·The Quest Continues: Studies and Essays in Honour of Louis de Broglie, Paul Dirac, and Eugene Wigner (Cambridge University Press, Cambridge, 1984).

    Google Scholar 

  30. W. M. Jin, “Dirac quantum fields in curved space-time,” Ph.D. Dissertation, 1999.

  31. W. M. Jin, Class. Quantum Grav. 15, 3163 (1998).

    Google Scholar 

  32. W. M. Jin, Class. Quantum Grav. 17, 2949 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, W.M. From Time Inversion to Nonlinear QED. Foundations of Physics 30, 1943–1973 (2000). https://doi.org/10.1023/A:1003714522790

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003714522790

Keywords

Navigation