Skip to main content
Log in

Insufficient Reason and Entropy in Quantum Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The objective of the consistent-amplitude approach to quantum theory has been to justify the mathematical formalism on the basis of three main assumptions: the first defines the subject matter, the second introduces amplitudes as the tools for quantitative reasoning, and the third is an interpretative rule that provides the link to the prediction of experimental outcomes. In this work we introduce a natural and compelling fourth assumption: if there is no reason to prefer one region of the configuration space over another, then they should be “weighted” equally. This is the last ingredient necessary to introduce a unique inner product in the linear space of wave functions. Thus, a form of the principle of insufficient reason is implicit in the Hilbert inner product. Armed with the inner product we obtain two results. First, we elaborate on an earlier proof of the Born probability rule. The implicit appeal to insufficient reason shows that quantum probabilities are not more objective than classical probabilities. Previously we had argued that the consistent manipulation of amplitudes leads to a linear time evolution; our second result is that time evolution must also be unitary. The argument is straightforward and hinges on the conservation of entropy. The only subtlety consists of defining the correct entropy; it is the array entropy, not von Neumann's. After unitary evolution has been established we proceed to introduce the useful notion of observables and we explore how von Neumann's entropy can be linked to Shannon's information theory. Finally, we discuss how various connections among the postulates of quantum theory are made explicit within this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. E. Shannon, Bell Syst. Tech. J. 27, 379, 623 (1948), reprinted in C. E. Shannon and W. Weaver, The Mathematical Theory of Communication (University of Illinois Press, Urbana, 1949).

    Google Scholar 

  2. E. T. Jaynes, Papers on Probability, Statistics and Statistical Physics, R. D. Rosenkrantz, ed. (Reidel, Dordrecht, 1983).

    Google Scholar 

  3. S. Kullback, Information Theory and Statistics (Wiley, New York, 1959). J. Shore and R. Johnson, IEEE Trans. Inform. Theory IT-26, 26 (1980). J. Skilling, in Maximum Entropy and Bayesian Methods in Science and Engineering, G. J. Erickson and C. R. Smith, eds. (Kluwer Academic, Dordrecht, 1988).

    Google Scholar 

  4. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1955).

    Google Scholar 

  5. See, e.g., D. Deutsch, Phys. Rev. Lett. 50, 631 (1983). M. H. Partovi, Phys. Rev. Lett. 50, 1883 (1983). R. Balian, Eur. J. Phys. 10, 208 (1989). W. H. Zurek, ed., Complexity, Entropy, and the Physics of Information (Addison-Wesley, Reading, MA, 1990).

    Google Scholar 

  6. R. Blankenbecler and M. H. Partovi, Phys. Rev. Lett. 54, 373 (1985).

    Google Scholar 

  7. A. Caticha, Phys. Lett. A 244, 13 (1998) (quant-ph/9803086).

    Google Scholar 

  8. A. Caticha, Phys. Rev. A 57, 1572 (1998) (quant-ph/9804012).

    Google Scholar 

  9. P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, Oxford, 1958).

    Google Scholar 

  10. R. P. Feynman, Rev. Mod. Phys. 20, 267 (1948). R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw- Hill, New York, 1965).

    Google Scholar 

  11. H. Stapp, Am. J. Phys. 40, 1098 (1972). M. Jammer, The Philosophy of Quantum Mechanics (Wiley, New York, 1974), and references therein.

    Google Scholar 

  12. The fact that Born's postulate is actually a theorem has been independently discovered several times: A. M. Gleason, J. Math. Mech. 6, 885 (1957); D. Finkelstein, Trans. N.Y. Acad. Sci. 25, 621 (1963); J. B. Hartle, Am. J. Phys. 36, 704 (1968); N. Graham, in The Many-Worlds Interpretation of Quantum Mechanics, B. S. DeWitt and N. Graham, eds. (Princeton University Press, Princeton, NJ, 1973). The limit N → ∞, where N is the number of replicas of the system is further discussed in Refs. 23 and 28.

    Google Scholar 

  13. T. F. Jordan, Am. J. Phys. 59, 606 (1991), with comments by N. Gisin, Am. J. Phys. 61, 86 (1993).

    Google Scholar 

  14. R. T. Cox, Am. J. Phys. 14, 1 (1946).

    Google Scholar 

  15. E. P. Wigner, Group Theory (Academic, New York, 1959). G. Emch and C. Piron, J. Math. Phys. 4, 469 (1963).

    Google Scholar 

  16. W. Daniel, Helv. Phys. Acta 55, 330 (1982). N. Gisin, J. Math. Phys. 24, 1779 (1983).

    Google Scholar 

  17. E. T. Jaynes, Phys. Rev. 108, 171 (1957), reprinted in Ref. 2.

    Google Scholar 

  18. A. Caticha, The assumptions underlying the consistent-amplitude approach to quantum theory (quant-ph/9809066).

  19. Y. Tikochinsky, Int. J. Theor. Phys. 27, 543 (1988); J. Math. Phys. 29, 398 (1988).

    Google Scholar 

  20. See, for example, L. de Broglie, Non-Linear Wave Mechanics—A Causal Interpretation (Elsevier, Amsterdam, 1950); P. Pearle, Phys. Rev. D 13, 857 (1976); I. Bialynicki-Birula and J. Mycielski, Ann. Phys. (N.Y.) 100, 62 (1976); S. Weinberg, Phys. Rev. Lett. 62, 485 (1989); S. Weinberg, Ann. Phys. (N.Y.) 194, 336 (1989); N. Gisin, Helv. Phys. Acta 62, 363 (1989).

    Google Scholar 

  21. C. G. Shull, D. K. Atwood, J. Arthur, and M. A. Horne, Phys. Rev. Lett. 44, 765 (1980). R. Gahler, A. G. Klein, and A. Zeilinger, Phys. Rev. A 23, 1611 (1981). J. J. Bollinger et al., Phys. Rev. Lett. 63, 1031 (1989).

    Google Scholar 

  22. E. Farhi, J. Goldstone, and S. Gutman, Ann. Phys. 192, 368 (1989).

    Google Scholar 

  23. E. T. Jaynes, in Statistical Physics, K. W. Ford, ed. (Benjamin, New York, 1963), Vol. 3, p. 182; IEEE Trans. Syst. Sci. Cybern. SSC-4, 227 (1968); both reprinted in Ref. 2; J. E. Shore and R. W. Johnson [3]; J. Skilling [3].

    Google Scholar 

  24. For a similar view, see A. Peres, Am. J. Phys. 52, 644 (1984).

    Google Scholar 

  25. L. P. Hughston, R. Jozsa, and W. K. Wootters, Phys. Lett. A 183, 14 (1993).

    Google Scholar 

  26. See, e.g., D. Finkelstein, J. M. Jauch, S. Schiminovich, and D. Speiser, J. Math. Phys. 3, 207 (1962). S. L. Adler, Commun. Math. Phys. 104, 611 (1986). D. Hestenes, Space-time Algebra (Gordon 6 Breach, New York, 1966); D. Hestenes, New Foundations for Classical Mechanics (Reidel, Dordrecht, 1986). W. E. Baylis, ed., Clifford (Geometric) Algebras (Birkhäuser, Boston, 1996).

    Google Scholar 

  27. C. C. Rodríguez, in Maximum Entropy and Bayesian Methods, W. von der Linden, V. Dose, R. Fischer, and R. Preuss, eds. (Kluwer, Dordrecht, 1999) (quant-ph/9808010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caticha, A. Insufficient Reason and Entropy in Quantum Theory. Foundations of Physics 30, 227–251 (2000). https://doi.org/10.1023/A:1003692916756

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003692916756

Keywords

Navigation