Skip to main content
Log in

An Effective Field Theory Model to Describe Nuclear Matter in Heavy-Ion Collisions

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Relativistic mean field theory with mesons σ, ω, π and ρ mediating interactions and nucleons as basic fermions has been very successful in describing nuclear matter and finite nuclei. However, in heavy-ion collisions, where the c. m. energy of two colliding nucleons will be in the hundreds of GeV region, nucleons are not expected to behave as point-like particles. Analyses of elastic pp and ¯pp scattering data in the relevant c. m. energy range show that the nucleon is a composite object—a topological soliton or Skyrmion embedded in a condensed quark-antiquark ground state. Against this backdrop, we formulate an effective field theory model of nuclear matter based on the gauged linear σ-model where quarks are the basic fermions, but the mesons still mediate the interactions. The model describes the nucleon as a Skyrmion and produces a q¯q ground state analogous to a superconducting ground state. Quarks are quasi-particles in this ground state. When the temperature exceeds a critical value, the scalar field in the ground state vanishes, quarks become massless, and a chiral phase transition occurs leading to chiral symmetry restoration. We explore the possibility of a first order phase transition in this model by introducing suitable self-interactions of the scalar field. Internal structures of the Skyrmions are ignored, and they are treated as point-like fermions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Matsui, Quark Matter '97: Nucl. Phys. A 638, 19c (1998).

    Google Scholar 

  2. J. W. Harris and B. Müller, Annu. Rev. Nucl. Part. Sci. 46, 71 (1996).

    Google Scholar 

  3. W. Cassing and E. L. Bratkovskaya, Phys. Rep. 308, 65 (1999).

    Google Scholar 

  4. H. Sorge, H. Stöcker, and W. Greiner, Ann. Phys. 192, 266 (1989). A. Jahns, H. Sorge, H. Stöcker, and W. Greiner, Z. Phys. A 341, 243 (1992).

    Google Scholar 

  5. S. H. Kahana, D. E. Kahana, Y. Pang, and T. J. Schlagel, Annu. Rev. Nucl. Part. Sci. 46, 31 (1996).

    Google Scholar 

  6. B. A. Li and C. M. Ko, Phys. Rev. C 52, 2037 (1995).

    Google Scholar 

  7. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961). 124, 246 (1961).

    Google Scholar 

  8. T. Hatsuda and T. Kunihiro, Phys. Rep. 247, 221 (1994).

    Google Scholar 

  9. G. Ripka, Quarks Bound by Chiral Fields (Oxford University Press, 1997).

  10. P. Papazoglou, J. Schaffner, S. Schramm, D. Zschiesche, H. Stöcker, and W. Greiner, Phys. Rev. C 55, 1499 (1997).

    Google Scholar 

  11. R. J. Furnstahl, H. B. Tang, and B. D. Serot, Phys. Rev. C 52, 1368 (1995).

    Google Scholar 

  12. G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lütgemeier, and B. Petersson, Nucl. Phys. B 469, 419 (1996).

    Google Scholar 

  13. E. Laermann, Lattice '97: Nucl. Phys. B (Proc. Suppl.) 63A, 114 (1998).

    Google Scholar 

  14. J. D. Walecka, Theoretical Nuclear and Subnuclear Physics (Oxford Univ. Press, 1995).

  15. B. D. Serot and J. D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997).

    Google Scholar 

  16. M. M. Islam, V. Innocente, T. Fearnley, and G. Sanguinetti, Europhys. Lett. 4, 189 (1987).

    Google Scholar 

  17. M. M. Islam, Z. Phys. C 53, 253 (1992).

    Google Scholar 

  18. M. M. Islam, Proceedings of the Workshop on Quantum Infrared Physics, H. M. Fried and B. Müller, eds. (World Scientific, 1995), p. 401.

  19. Ö. Kaymakcalan, S. Rajeev, and J. Schechter, Phys. Rev. D 30, 594 (1984). Ö. Kaymakcalan and J. Schechter, Phys. Rev. D 31, 1109 (1985).

    Google Scholar 

  20. M. Bando, T. Kugo, S. Uehara, K. Yamawaki, and T. Yanagida, Phys. Rev. Lett. 54, 1215 (1985). M. Bando, T. Kugo, and K. Yamawaki, Phys. Rep. 64, 217 (1988).

    Google Scholar 

  21. S. Callan, S. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177, 2247 (1969).

    Google Scholar 

  22. Ulf-G. Meissner, N. Kaiser, A. Wirzba, and W. Weise, Phys. Rev. Lett. 57, 1676 (1986). Ulf-G. Meissner, N. Kaiser, and W. Weise, Nucl. Phys. A 466, 685 (1987).

    Google Scholar 

  23. W. N. Cottingham, D. Kalafatis, and R. Vinh Mau, Phys. Rev. Lett. 73, 1328 (1994). W. N. Cottingham and R. Vinh Mau, J. Phys. G 24, 1227 (1998).

    Google Scholar 

  24. R. Friedberg and T. D. Lee, Phys. Rev. D 15, 1694 (1977). D 16, 1096 (1977). D 18, 26323 (1978). L. Wilets, in Chiral Solitons, K. F. Liu, ed. (World Scientific, 1987). T. D. Lee and Y. Pang, Phys. Rep. 221, 251 (1992).

    Google Scholar 

  25. J. Boguta and A. R. Bodmer, Nucl. Phys. 292, 403 (1977).

    Google Scholar 

  26. Y. K. Gambhir, P. Ring, and A. Thimet, Ann. Phys. 198, 132 (1990).

    Google Scholar 

  27. E. Witten, Nucl. Phys. B 223, 422, 433 (1983).

    Google Scholar 

  28. P. Jain, R. Johnson, Ulf-G. Meissner, N. W. Park, and J. Schechter, Phys. Rev. D 37, 3252 (1988). Ulf-G. Meissner, N. Kaiser, H. Weigel, and J. Schechter, Phys. Rev. D 39, 1956 (1989).

    Google Scholar 

  29. L. Zhang and N. C. Mukhopadhyay, Phys. Rev. D 50, 4668 (1994).

    Google Scholar 

  30. For a recent review see: J. Schechter and H. Weigel, The Skyrme Model for Baryons, to appear in INSA-BOOK-2000, hep-ph/9907554.

  31. R. Alkofer, H. Reinhardt, and H. Weigel, Phys. Rep. 265, 139 (1996). C. V. Christov et al., Prog. Part. Nucl. Phys. 37 91 (1996). R. Alkofer and H. Reinhardt, Chiral Quark Dynamics (Springer-Verlag, Berlin, 1995), and references therein.

    Google Scholar 

  32. M. M. Islam, Proceedings of the Workshop on Quantum Chromodynamics, H. M. Fried and B. Müller, ed. (World Scientific, 1999), p. 119.

  33. V. A. Miransky, Dynamical Symmetry Breaking in Quantum Field Theories (World Scientific, 1993).

  34. M. Harada, F. Sannino, J. Schechter, and H. Weigel, Phys. Lett. B 384, 5 (1996).

    Google Scholar 

  35. R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338 (1984). F. Wilczek, Int. J. Mod. Phys. A 7, 3911 (1992). K. Rajagopal and F. Wilczek, Nucl. Phys. B 399, 395 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, M.M., Weigel, H. An Effective Field Theory Model to Describe Nuclear Matter in Heavy-Ion Collisions. Foundations of Physics 30, 577–597 (2000). https://doi.org/10.1023/A:1003672913006

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003672913006

Keywords

Navigation