Advertisement

Foundations of Physics

, Volume 30, Issue 4, pp 543–565 | Cite as

Direct and Indirect Searches for Low-Mass Magnetic Monopoles

  • Leonard Gamberg
  • George R. Kalbfleisch
  • Kimball A. Milton
Article

Abstract

Recently, there has been renewed interest in the search for low-mass magnetic monopoles. At the University of Oklahoma we are performing an experiment (Fermilab E882) using material from the old D0 and CDF detectors to set limits on the existence of Dirac monopoles of masses of the order of 500 GeV. To set such limits, estimates must be made of the production rate of such monopoles at the Tevatron collider, and of the binding strength of any such produced monopoles to matter. Here we sketch the still primitive theory of such interactions, and indicate why we believe a credible limit may still be obtained. On the other hand, there have been proposals that the classic Euler–Heisenberg Lagrangian together with duality could be employed to set limits on magnetic monopoles having masses less than 1 TeV, based on virtual, rather than real processes. The D0 collaboration at Fermilab has used such a proposal to set mass limits based on the nonobservation of pairs of photons each with high transverse momentum. We critique the underlying theory, by showing that the cross section violates unitarity at the quoted limits and is unstable with respect to radiative corrections. We therefore believe that no significant limit can be obtained from the current experiments, based on virtual monopole processes.

Keywords

Production Rate Transverse Momentum Significant Limit Current Experiment Radiative Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    P. A. M. Dirac, Proc. Roy. Soc. (London) A 133, 60 (1931); Phys. Rev. 74, 817 (1948).Google Scholar
  2. 2.
    J. Schwinger, Phys. Rev. 144, 1087 (1966), 173, 1536 (1968).Google Scholar
  3. 3.
    J. Schwinger, Phys. Rev. D 12, 3105 (1975).Google Scholar
  4. 4.
    T. T. Wu and C. N. Yang, in Properties of Matter Under Unusual Conditions, H. Mark and S. Fernbach, eds. (Wiley, New York, 1969), p. 349; Phys. Rev. D 12, 3843 (1975). A. M. Polyakov, JETP Lett. 20, 194 (1974). Y. Nambu, Phys. Rev. D 10, 4262 (1974). G. 't Hooft, Nucl. Phys. 879, 276 (1974). B. Julia and A. Zee, Phys. Rev. D 11, 2227 (1975).Google Scholar
  5. 5.
    J. Preskill, Ann. Rev. Nucl. Sci. 34, 461 (1984). T. W. Kirkman and C. K. Zachos, Phys. Rev. D 24, 999 (1981).Google Scholar
  6. 6.
    For example, M. Turner, Phys. Lett. 115B, 95 (1982).Google Scholar
  7. 7.
    P. H. Eberhard et al., Phys. Rev. D 4, 3260 (1971). R. R. Ross et al., Phys. Rev. D 8, 698 (1973). P. B. Price, Shi-lun Guo, S. P. Ahlen, and R. L. Fleischer, Phys. Rev. Lett. 52, 1264 (1984). B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982); 51, 1933 (1983); 55, 25 (1985). H. Jeon and M. J. Longo, Phys. Rev. Lett. 75, 1443 (1995), Erratum 76, 159 (1996). M. Ambrosio et al., Phys. Lett. B 406, 249 (1997).Google Scholar
  8. 9.
    P. B. Price, R. Guoxiao, and K. Kinoshita, Phys. Rev. Lett. 59, 2523 (1987). P. B. Price, J. Guiri, and K. Kinoshita, Phys. Rev. Lett. 65, 149 (1990).Google Scholar
  9. 10.
    A. De Rújula, Nucl. Phys. B 435, 257 (1995).Google Scholar
  10. 11.
    M. Acciarri et al., Phys. Lett. B 345, 609 (1995).Google Scholar
  11. 12.
    I. F. Ginzburg and S. L. Panfil, Yad. Fiz. 36, 1461 (1982) [Sov. J. Nucl. Phys. 36, 850 (1982)].Google Scholar
  12. 13.
    I. F. Ginzburg and A. Schiller, Phys. Rev. D 57, R6599 (1998); 60, 075016 (1999).Google Scholar
  13. 14.
    B. Abbott et al., Phys. Rev. Lett. 81, 524 (1998).Google Scholar
  14. 15.
    S. Graf, A. Schäfer, and W. Greiner, Phys. Lett. B 262, 463 (1991).Google Scholar
  15. 16.
    J. Schwinger, Particles, Sources, and Fields, Vol. 2 (Addison-Wesley, Reading, MA, 1973).Google Scholar
  16. 17.
    D. Zwanziger, Phys. Rev. D 3, 880 (1971).Google Scholar
  17. 18.
    L. Gamberg and K. A. Milton, Phys. Rev. D 61, 075013 (2000).Google Scholar
  18. 19.
    J. Schwinger, K. A. Milton, W.-y. Tsai, L. L. DeRaad, Jr., and D. C. Clark, Ann. Phys. (N.Y.) 101, 451 (1976).Google Scholar
  19. 20.
    K. A. Milton and L. L. DeRaad, Jr., J. Math. Phys. 19, 375 (1978).Google Scholar
  20. 21.
    L. F. Urrutia, Phys. Rev. D 18, 3031 (1978). See also F. R. Ore, Jr., Phys. Rev. D 13, 2295 (1976).Google Scholar
  21. 22.
    For example, J. Schwinger, L. L. DeRaad, Jr., K. A. Milton, and W.-y. Tsai, Classical Electrodynamics (Advanced Book Program, Perseus Books Group, 1998).Google Scholar
  22. 23.
    P. Osland and T. T. Wu, Nucl. Phys. B 247, 421, 450 (1984); B 256, 13, 32 (1985). P. Osland, C. L. Schultz, and T. T. Wu, Nucl. Phys. B 256, 449 (1985). P. Osland and T. T. Wu, Nucl. Phys. B 261, 687 (1985).Google Scholar
  23. 24.
    W. V. R. Malkus, Phys. Rev. 83, 899 (1951).Google Scholar
  24. 25.
    L. Bracci and G. Fiorentini, Nucl. Phys. B 232, 236 (1984).Google Scholar
  25. 26.
    D. Sivers, Phys. Rev. D 2, 2048 (1970).Google Scholar
  26. 27.
    K. Olaussen and R. Sollie, Nucl. Phys. B 255, 465 (1985).Google Scholar
  27. 28.
    Y. Kazama and C. N. Yang, Phys. Rev. D 15, 2300 (1977).Google Scholar
  28. 29.
    K. Olaussen, H. A. Olsen, P. Osland, and I. Øverbø, Nucl. Phys. B 228, 567 (1983).Google Scholar
  29. 30.
    T. F. Walsh, P. Weisz, and T. T. Wu, Nucl. Phys. B 232, 349 (1984).Google Scholar
  30. 31.
    H. A. Olsen, P. Osland, and T. T. Wu, Phys. Rev. D 42, 665 (1990). H. A. Olsen and P. Osland, Phys. Rev. D 42, 690 (1990).Google Scholar
  31. 32.
    John Furneaux, private communication.Google Scholar
  32. 33.
    C. J. Goebel, in '83, J. L. Stone, ed. (Plenum, New York, 1984), p. 333.Google Scholar
  33. 34.
    E. Goto, H. Kolm, and K. Ford, Phys. Rev. 132, 387 (1963).Google Scholar
  34. 35.
    R. A. Carrigan, Jr., B. P. Strauss, and G. Giacomelli, Phys. Rev. D 17, 1754 (1978).Google Scholar
  35. 36.
    J. Schwinger, Phys. Rev. 82, 664 (1951).Google Scholar
  36. 37.
    E. Lifshitz and L. Pitayevski, Relativistic Quantum Theory, Part 2 (Pergamon, Oxford, 1974).Google Scholar
  37. 38.
    W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936). V. Weisskopf, Kgl. Danske Videnskab. Selskab. Mat.-fys. Medd. 14, No. 6, (1936).Google Scholar
  38. 40.
    D. A. Dicus, C. Kao, and W. W. Repko, Phys. Rev. D 57, 2443 (1998).Google Scholar
  39. 41.
    S. Laporta and E. Remiddi, Phys. Lett. B 265, 182 (1991); B 301, 440 (1993).Google Scholar
  40. 42.
    S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, Cambridge, 1995), Vol. I, p. 523.Google Scholar
  41. 43.
    J. Halter, Phys. Lett. B 316, 155 (1993).Google Scholar
  42. 44.
    M. Bordag, D. Robaschik, and E. Wieczorek, Ann. Phys. (N.Y.) 165, 192 (1985). M. Bordag and J. Lindig, Phys. Rev. D 58, 045003 (1998).Google Scholar
  43. 45.
    V. I. Ritus, Zh. Eksp. Teor. Fiz. 69, 1517 (1975) [Sov. Phys.-JETP 42, 774 (1976)].Google Scholar
  44. 46.
    M. Reuter, M. G. Schmidt, and C. Schubert, Ann. Phys. (N.Y.)259, 313 (1997). D. Fliegner, M. Reuter, M. G. Schmidt, and C. Schubert, Theor. Math. Phys. 113, 1442 (1997).Google Scholar
  45. 47.
    A. S. Goldhaber, Phys. Rev. 140, B1407 (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Leonard Gamberg
    • 1
  • George R. Kalbfleisch
    • 2
  • Kimball A. Milton
    • 3
  1. 1.Department of Physics and AstronomyUniversity of OklahomaNorman
  2. 2.Department of Physics and AstronomyUniversity of OklahomaNorman
  3. 3.Department of Physics and AstronomyUniversity of OklahomaNorman

Personalised recommendations