Skip to main content
Log in

The Case for Inertia as a Vacuum Effect: A Reply to Woodward and Mahood

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The possibility of an extrinsic origin for inertial reaction forces has recently seen increased attention in the physical literature. Among theories of extrinsic inertia, the two considered by the current work are (1) the hypothesis that inertia is a result of gravitational interactions and (2) the hypothesis that inertial reaction forces arise from the interaction of material particles with local fluctuations of the quantum vacuum. A recent article supporting the former and criticizing the latter is shown to contain substantial errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. J. Adler, B. Casey, and O. C. Jacob, Am. J. Phys. 63, 720 (1995).

    Google Scholar 

  2. R. Loudon, The Quantum Theory of Light (Clarendon Press, Oxford, 1982).

    Google Scholar 

  3. P. Ramond, Field Theory–A Modern Primer (Beryaunka, Menlo Park, CA, 1981), pp. 55.

    Google Scholar 

  4. A. D. Sakharov, Dokl. Acad. Nauk SSSR 177, 70 (1968); translated in Sov. Phys. Dokl. 12, 1040 (1968).

    Google Scholar 

  5. Ya. B. Zel'dovich, Usp. Fiz. Nauk. 95, 209 (1968); translated in Sov. Phys. Usp. 11(3), 381 (1968).

    Google Scholar 

  6. S. L. Adler, Rev. Mod. Phys. 54, 729 (1982).

    Google Scholar 

  7. H. E. Puthoff, Phys. Rev. A 39, 2333 (1989).

    Google Scholar 

  8. J. V. Woodward and T. Mahood, Found. Phys. (1999), in press.

  9. B. Haisch, A. Rueda, and H. E. Puthoff, Phys. Rev. A 49, 678 (1994).

    Google Scholar 

  10. A. Rueda and B. Haisch, Phys. Lett. A 240, 115 (1998); Found. Phys. 28, 1057 (1998).

    Google Scholar 

  11. A. Einstein, Ann. Phys. 49, 769 (1916), as quoted in H. C. Ohanian and R. Ruffini, Gravitation and Spacetime, 2nd ed. (W. W. Norton, New York, London, 1994), p. 53.

    Google Scholar 

  12. D. W. Sciama, Mon. Not. Roy. Astron. Soc. 113, 34 (1953).

    Google Scholar 

  13. U.S. Patent 5,280,864, Inventor: J. F. Woodward.

  14. J. F. Woodward, Representation to NASA Breakthrough Propulsion Physics Workshop, Cleveland, OH, Aug. 12-14, 1997, Proceedings NASA Breakthrough Propulsion Physics Workshop, NASA-CP-1999-208694 (1999), p. 367.

  15. W. Rindler, Phys Lett. A 187, 236 (1994).

    Google Scholar 

  16. K. Nordtvedt, Int. J. Theor. Phys. 27, 1395 (1988).

    Google Scholar 

  17. S. Haroche and J. M. Raimond, Sci. Am. 268(4), 54 (1993).

    Google Scholar 

  18. W. McCrea, Q. J. Roy. Astron. Soc. 27, 137 (1986).

    Google Scholar 

  19. J. T. Cushing and E. McMullin (eds.), Philosophical Consequences of Quantum Theory (University of Notre Dame Press, Notre Dame, IN, 1989).

    Google Scholar 

  20. J. R. Letaw, Phys. Rev. D 23, 1709 (1981), P. G. Grove and A. C. Ottewill, Class. Quantum Grav. 2, 373 (1985).

    Google Scholar 

  21. D. C. Cole and A. Rueda (1999), in preparation. D. C. Cole (1999), in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobyns, Y., Rueda, A. & Haisch, B. The Case for Inertia as a Vacuum Effect: A Reply to Woodward and Mahood. Foundations of Physics 30, 59–80 (2000). https://doi.org/10.1023/A:1003639008887

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003639008887

Keywords

Navigation