Skip to main content
Log in

Cascade Design of State Observers

  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

A block approach to designing state observers for nonlinear multivariate systems is developed. A block-observable form of nonlinear systems is elaborated, in which the design of dynamic observation devices is subdivided into sequentially and independently solved elementary subproblems of reduced dimension. Stepwise procedures for choosing state observer controls from high-gain feedback systems are developed. Lower estimates for the finite coefficients of state observers are used in estimating the state vector components with given accuracy via synthesis decomposition. The designed algorithms ensure the invariance of the control operator to parametric uncertainties. By way of application, the state variables of an asynchronous sensorless drive motor are estimated from stator current measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Isidori, A., Nonlinear Control Systems, New York: Springer-Verlag, 1995.

    Google Scholar 

  2. Ciccarella, G., Dalla Mora, M., and German, A., A Luenberger-like Observer for Nonlinear Systems, Int. J. Control, 1993, vol. 57, no. 3, pp. 537-556.

    Google Scholar 

  3. Proychev, Ph. and Mishkov, R.L., Transformation of Nonlinear Systems in Observer Canonical Form with Reduced Dependency on Derivatives of the Input, Automatica, 1993, vol. 29, no. 2, pp. 495-498.

    Google Scholar 

  4. Nijmeijer, H. and van der Schaft, A.J., Nonlinear Dynamical Control Systems, Berlin: Springer, 1990.

    Google Scholar 

  5. Drakunov, S.V., Izosimov, D.B., Luk'yanov, A.G., Utkin, V.A., and Utkin, V.I., Block Control Principle. Part I, Avtom. Telemekh., 1990, no. 5, pp. 3-13; Part II, 1990, no. 6, pp. 20-31.

  6. Utkin, V.A., The Method of Motion Decomposition in Observation Problems, Avtom. Telemekh., 1990, no 3, pp. 27-37.

  7. Willems, J.C., Almost Invariant Subspaces: An Approach to High-Gain Feedback Design, IEEE Trans. Autom. Control, Part 1, 1981, vol. 26, no. 1, pp. 235-252; Part 2, 1982, vol. 27, no. 5, pp. 1071-1085.

    Google Scholar 

  8. Meerov, M.V., Stable Automatic Control Systems with Infinitely Large Coefficients, Avtom. Telemekh., 1947, vol. 8, no. 4, pp. 225-242.

    Google Scholar 

  9. Utkin, V.I., The Motion Separation Method in State Identifier Design, in Problemy upravleniya mnogosvyaznymi sistemami (Control of Multiconnected Systems), Moscow: Nauka, 1983, pp. 91-97.

    Google Scholar 

  10. Utkin, V.I. and Yang, K.D., Design of Discontinuity Planes in Multivariate Variable-Structure Systems, Avtom. Telemekh., 1978, no. 10, pp. 72-77.

  11. Utkin, V.I., Skol'zyashchie rezhimi v zadachakh upravleniya i optimizatsii (Moving States in Control and Optimization), Moscow: Nauka, 1981.

    Google Scholar 

  12. Utkin, V.I., Sliding Mode Control Design Principles and Applications to Electric Drives, IEEE Trans. Ind. Electron., 1993, vol. 40, no. 1, pp. 23-36.

    Google Scholar 

  13. Luenberger, D.B., Observers of Multivariable Systems, IEEE Trans. Autom. Control, 1966, vol. 11, pp. 190-197.

    Google Scholar 

  14. Luk'yanov, A.G., Sliding-Mode Block Design of Nonlinear Systems, Avtom. Telemekh., 1998, no. 7, pp. 14-34.

  15. Nicosia, S. and Tomei, P., A Global Output Feedback Controller for Flexible Joint Robots, Automatica, 1995, vol. 31, no. 10, pp. 1465-1469.

    Google Scholar 

  16. Krasnova, S.A., Obstacle Avoidance Control of the Flexible Joint Robot using Drives Dynamics, 14th IFAC World Congress, Beijing, 1999, vol. B, pp. 371-376.

  17. Krasnova, S.A. and Utkin, V.A., Air Intake into Cylinders of Internal Combustion Engines: Estimation with Invariant Feedback from λ-Sensor, in Problemy razvitiya avtomobilestroeniya v Rossii: Izbrannye doklady II-IV Mezhdynarodnykh nauchno-prakticheskikh konferentsii (1996-1998). Pod red. G.K. Mirzoeva, A.N. Moskalyuka, M.M. Mrishtala (Selected Papers on Automobile Design Development in Russia. Proc. II-IV Int. Sci. Conf. (1996-1998)), G.K. Mirzoev, A.N. Moskalyuk, and M.M. Mrishtala, Eds., Tolyatti: AVTOBAZ, 1999, pp. 75-79.

    Google Scholar 

  18. Utkin, V.A., Control of Asynchronous Electrodrives, Avtom. Telemekh., 1994, no. 12, pp. 53-65.

  19. Andreev, Yu.P., Upravlenie konechnomernymi lineinymi ob”ektami (Control for Finite-Dimensional Linear Objects), Moscow: Nauka, 1976.

    Google Scholar 

  20. Kalman, R.E., Falb, P.L., and Arbib, M.A., Topics in Mathematical System Theory, New York: McGraw-Hill, 1969. Translated under the title Ocherki po matematicheskoi teorii sistem, Moscow: Mir, 1971.

    Google Scholar 

  21. Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems, New York: Wiley, 1972. Translated under the title Lineinye optimal'nye sistemy upravleniya, Moscow: Mir, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasnova, S.A., Utkin, V. & Mikheev, Y.V. Cascade Design of State Observers. Automation and Remote Control 62, 207–226 (2001). https://doi.org/10.1023/A:1002890122128

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002890122128

Keywords

Navigation