Advertisement

Automation and Remote Control

, Volume 62, Issue 3, pp 430–442 | Cite as

Polynomial Design of Optimal Sampled-Data Tracking Systems: II. Robust Optimization

  • K. Yu. Polyakov
Article

Abstract

A direct method for robust sampled-data tracking systems design is presented. The method is based on the use of Laplace transformation in continuous time and polynomial equation theory. A criterion is proposed for robust optimization of sampled-data tracking systems. The structure of the optimal robust controller transfer function is investigated and its order is determined explicitly. The relations between robust and quadratic optimization problems are established. A mixed optimization problem is considered, when the cost function includes the integral quadratic error and a robustness term.

Keywords

Cost Function Transfer Function Continuous Time Polynomial Equation Robust Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Doyle, J.C., Guaranteed Margins for LQG Regulators, IEEE Trans. Autom. Control, 1978, vol. AC-23, no. 8, pp. 756, 757.Google Scholar
  2. 2.
    Zames, G., Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms and Approximate Inverses, IEEE Trans. Autom. Control, 1981, vol. AC-26, no. 2, pp. 301–320.Google Scholar
  3. 3.
    Bamieh, B.A. and Pearson, J.B., A General Framework for Linear Periodic Systems with Applications to Sampled-Data Control, IEEE Trans. Autom. Control, 1992, vol. AC-37, no. 4, pp. 418–435.Google Scholar
  4. 4.
    Toivonen, H.T., Sampled-Data Control of Continuous-Time Systems with an Optimality Criterion, Automatica, 1992, vol. 28, no. 1, pp. 45–54.Google Scholar
  5. 5.
    Toivonen, H.T., Worst-Case Sampling for Sampled-Data Design, 32nd IEEE Conf. Decision Control, 1993, pp. 337–342.Google Scholar
  6. 6.
    Chen, T. and Francis, B.A., Optimal Sampled-Sata Control Systems, Berlin: Springer, 1995.Google Scholar
  7. 7.
    Tou, J., Digital and Sampled-Data Control Systems, New York: McGraw-Hill, 1959.Google Scholar
  8. 8.
    Rosenwasser, E.N., Lineinaya teoriya tsifrovogo upravleniya v nepreryvnom vremeni (Linear Theory of Digital Control in Continuous Time), Moscow: Nauka, 1994.Google Scholar
  9. 9.
    Kučera, V., Discrete Linear Control, New York: Wiley, 1979.Google Scholar
  10. 10.
    Volgin, L.N., Optimal'noe diskretnoe upravlenie dinamicheskimi sistemami (Optimal Discrete Control of Dynamic Systems), Moscow: Nauka, 1986.Google Scholar
  11. 11.
    Grimble, M.J., Robust Industrial Control, New York: Prentice Hall, 1995.Google Scholar
  12. 12.
    Polynomial Methods for Control Systems Design, Grimble, M.J. and Kučera, V., Eds, London: Springer, 1996.Google Scholar
  13. 13.
    Kwakernaak, H., Minimax Frequency Domain Performance and Robustness Optimization of Linear Feedback Systems, IEEE Trans. Autom. Control, 1985, vol. AC-30, no. 10, pp. 994–1004.Google Scholar
  14. 14.
    Kwakernaak, H., The Polynomial Approach to H Regulation, in Lecture Notes in Mathematics, ℌ∞ Control Theory, London: Springer, 1990, vol. 1496, pp. 141–221.Google Scholar
  15. 15.
    Polyakov, K.Yu., Polynomial Design of Optimal Sampled-Data Tracking Systems. I. Quadratic Optimization, Avtom. Telemekh., 2001, no. 2, pp. 149–162.Google Scholar
  16. 16.
    Polyakov, K.Yu., Polynomial Synthesis of Digital Control Systems for Continuous Plants. I. Quadratic Optimization, Avtom. Telemekh, 1998, no. 10, pp. 76–89.Google Scholar
  17. 17.
    Polyakov, K.Yu., Polynomial Synthesis of Digital Control Systems for Continuous Plants. II. Robust Optimization, Avtom. Telemekh, 1998, no. 12, pp. 94–108.Google Scholar
  18. 18.
    Brown, G.D., Grimble, M.J., and Biss, D., A Simple Efficient Controller Algorithm, 26th IEEE Conf. Decision Control, 1987.Google Scholar
  19. 19.
    Saeki, M., Method of Solving a Polynomial Equation for an Optimal Control Problem, IEEE Trans. Autom. Control, 1989, vol. AC-34, pp. 166–168.Google Scholar
  20. 20.
    Grimble, M.J., Generalized 2 /ℌ Robust Controller for Adaptive Control Applications, 30th IEEE Conf. Decision Control, 1991, pp. 2830–2835.Google Scholar
  21. 21.
    Fragopoulos, D., Grimble, M.J., and Shaked, U., H Controller Design for the SISO Case Using Wiener Approach, IEEE Trans. Autom. Control, 1991, vol. AC-36, no. 10, pp. 1204–1208.Google Scholar
  22. 22.
    Besekerskii, V.A., Tsifrovye avtomaticheskie sistemy (Digital Automatic Systems), Moscow: Nauka, 1975.Google Scholar
  23. 23.
    Ambrosovskii, V.M., Barabanov, A.E., Gul'chak, A.M., and Miroshnikov, A.N., Design of Tracking Systems Using Uniform Frequency Optimization, Avtom. Telemekh., 1997, no. 4, pp. 3–13.Google Scholar
  24. 24.
    Rosenwasser, E.N., Metod parametricheskikh peredatochnykh funktsii v zadache sinteza tsifrovykh system upravleniya (Parametric Transfer Function Method in Digital Control Systems Design), St. Petersburg: S.-Peterb. Gos. Morsk. Tech. Univ., 1993.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • K. Yu. Polyakov
    • 1
  1. 1.The State Marine Technical UniversitySt. PetersburgRussia

Personalised recommendations