Skip to main content
Log in

Error Estimation and Optimization of the Functional Algorithms of a Random Walk on a Grid Which Are Applied to Solving the Dirichlet Problem for the Helmholtz Equation

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider the algorithms of a “random walk on a grid” which are applied to global solution of the Dirichlet problem for the Helmholtz equation (the direct and conjugate methods). In the metric space C we construct some upper error bounds and obtain optimal values (in the sense of the error bound) of the parameters of the algorithms (the number of nodes and the sample size).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mikhailov G. A., Minimization of Computational Costs of Non-Analogue Monte Carlo Methods, World Sci., Singapore (1991). (Ser. Soviet East European Mathematics. V. 5).

    Google Scholar 

  2. Voytishek A. V. and Prigarin S. M., “On functional convergence of estimators and models in the Monte Carlo method,” Zh. Vychisl. Mat. i Mat. Fiz., 32, No. 10, 1641–1651 (1992).

    Google Scholar 

  3. Mikhailov G. A., Parametric Estimates by the Monte Carlo Method, VSP, Utrecht (1995).

    Google Scholar 

  4. Vo?tishek A. V., “Convergence asymptotics of discrete-stochastic numerical methods for global estimation of a solution to an integral equation of the second kind,” Sibirsk. Mat. Zh., 35, No. 4, 728–736 (1994). (See also “On the paper “Convergence asymptotics of discrete-stochastic numerical methods for global estimation of a solution to an integral equation of the second kind” Sibirsk. Mat. Zh., 37, No. 3, 714 (1996).)

    Google Scholar 

  5. Voytishek A. V., “On the errors of discretely stochastic procedures in estimating globally the solution of an integral equation of the second kind,” Russian J. Numer. Anal. Math. Modelling, 11, No. 1, 71–92 (1996).

    Google Scholar 

  6. Shkarupa E. V. and Voytishek A. V., “Optimization of discretely stochastic procedures for globally estimating the solution of an integral equation of the second kind,” Russian J. Numer. Anal. Math. Modelling, 12, No. 6, 525–546 (1997).

    Google Scholar 

  7. Shkarupa E. V., “Error estimation and optimization for the frequency polygon method in the C-metric,” Comput. Math. Math. Phys., 38, No. 4, 590–603 (1998).

    Google Scholar 

  8. Plotnikov M. Yu. and Shkarupa E. V., “Error estimation and optimization in C-space of Monte Carlo iterative solution of nonlinear integral equations,” Monte Carlo Methods and Application, 4, No. 1, 53–70 (1998).

    Google Scholar 

  9. Bakhvalov S. N., Numerical Methods [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  10. Traub J. F., Wasilkowski G. W., and Wozniakowski H., Information Based Complexity, Acad. Press, New York (1988).

    Google Scholar 

  11. Heinrich S., “A multilevel version of the method of dependent tests,” in: Proc. Third Petersburg Workshop on Simulation, St. Petersburg, 1998, pp. 31–35.

  12. Heinrich S., “Monte Carlo complexity of global solution of integral equations,” J. Complexity, 14, 151–175 (1998).

    Google Scholar 

  13. Mikha?lov G. A., Weighted Monte Carlo Methods [in Russian], Izdat. Sibirsk. Otdel. Ros. Akad. Nauk, Novosibirsk (2000).

    Google Scholar 

  14. Mikhailov G. A. and Cheshkova A. F., “Monte Carlo solution of the finite-difference Dirichlet problem for the multidimensional Helmholtz equation,” Comput. Math. Math. Phys., 38, No. 1, (1998).

  15. Marchuk G. I. and Agoshkov V. I., An Introduction to Projection-Grid Methods [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  16. Zav?yalov Yu. S., Kvasov B. I., and Miroshnichenko V. L., Methods of Spline Functions [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  17. Leadbetter M. R., Lindgren G., and Rootzen H., Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, New York; Heidelberg; Berlin (1986).

    Google Scholar 

  18. Mikha?lov G. A., Optimization of Weighted Monte Carlo Methods [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  19. Spitzer F., Principles of Random Walk [Russian translation], Mir, Moscow (1969).

    Google Scholar 

  20. Rozanov Yu. A., Probability, Random Processes, and Mathematical Statistics [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  21. Prudnikov A. P., Brychkov Yu. A., and Marichev O. I., Integrals and Series [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  22. Sabel?fel?d K. K., Monte Carlo Methods in Boundary Value Problems [in Russian], Nauka, Novosibirsk (1989).

    Google Scholar 

  23. Shkarupa E. V., “Error estimation and optimization of functional algorithms of the Monte Carlo method for solution of the Dirichlet problem for the Helmholtz equation,” in: Abstracts: Conference of Young Scientists of IVM and MG SO RAN, Novosibirsk, 2002, pp. 157–163.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shkarupa, E.V. Error Estimation and Optimization of the Functional Algorithms of a Random Walk on a Grid Which Are Applied to Solving the Dirichlet Problem for the Helmholtz Equation. Siberian Mathematical Journal 44, 908–925 (2003). https://doi.org/10.1023/A:1025957324404

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025957324404

Navigation