Skip to main content
Log in

Equivalence Principle and the Principle of Local Lorentz Invariance

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this paper we scrutinize the so called Principle of Local Lorentz Invariance (PLLI) that many authors claim to follow from the Equivalence Principle. Using rigourous mathematics, we introduce in the General Theory of Relativity two classes of reference frames (PIRFs and LLRFγs) which as natural generalizations of the concept of the inertial reference frames of the Special Relativity Theory. We show that it is the class of the LLRFγs that is associated with the PLLI. Next we give a definition of physically equivalent reference frames. Then, we prove that there are models of General Relativity Theory (in particular on a Friedmann universe) where the PLLI is false. However our finding is not in contradiction with the many experimental claims vindicating the PLLI, because theses experiments do not have enough accuracy to detect the effect we found. We prove moreover that PIRFs are not physically equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. A. Rodrigues, Jr., M. Scanavini, and L. P. de Alcantara, Found. Phys. Lett. 3, 59 (1990).

    Google Scholar 

  2. N. Bourbaki, Theorie des Ensembles (Hermann, Paris, 1957).

    Google Scholar 

  3. H. Reichenbach, The Philosophy of Space and Time (Dover, New York, 1958).

    Google Scholar 

  4. R. K. Sachs and H. Wu, General Relativity for Mathematicians (Springer, New York, 1977).

    Google Scholar 

  5. W. A. Rodrigues, Jr. and M. A. F. Rosa, Found. Phys. 19, 705 (1989).

    Google Scholar 

  6. W. A. Rodrigues, Jr. and E. Capelas de Oliveira, Phys. Lett. A 140, 479 (1989).

    Google Scholar 

  7. Y. Choquet-Bruhat, C. Dewitt-Morette, and M. Dillard-Bleick, Analysis, Manifolds and Physics, revised edn. (North-Holland, Amsterdam, 1982).

    Google Scholar 

  8. W. A. Rodrigues, Jr. and M. Sharif, “Rotating frames in SRT: Sagnac effect and related issues,” Found. Phys. 31(12) (2001).

  9. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1 (Wiley, New York, 1963).

    Google Scholar 

  10. R. L. Bishop and S. I. Goldberg, Tensor Analysis on Manifolds (Dover, New York, 1980).

    Google Scholar 

  11. A. S. Eddington, The Mathematical Theory of Relativity, 3rd edn. (Chelsea, New York, 1975).

    Google Scholar 

  12. R. C. Tolman, Relativity, Thermodynamics and Cosmology (Dover, New York, 1987).

    Google Scholar 

  13. T. Matolsci, Spacetime Without Reference Frames (Akadémiai Kiadó, Budapest, 1993).

    Google Scholar 

  14. J. E. Maiorino and W. A. Rodrigues, Jr., “What is superluminal wave motion?,” Sci. Tech. Mag. 4(2) (1999); electronic book at http://www.ceptec.br/∼stm.

  15. J. L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960).

    Google Scholar 

  16. M. Friedman, Foundations of Spacetime Theories (University Press, Princeton, 1983).

    Google Scholar 

  17. C. M. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francesco, 1973).

    Google Scholar 

  18. I. Ciufuolini and J. A. Wheeler, Gravitation and Inertia (University Press, Princeton, New Jersey, 1995).

    Google Scholar 

  19. C. M. Will, Theory and Experiment in Gravitational Physics (University Press, Cambridge, 1980).

    Google Scholar 

  20. B. Bertotti and L. P. Grishchuk, Class. Quant. Grav. 7, 1733 (1990).

    Google Scholar 

  21. M. D. Gabriel and M. P. Haugan, Phys. Rev. D 141, 2943 (1990).

    Google Scholar 

  22. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).

    Google Scholar 

  23. E. Prugrovecki, Quantum Geometry: A Framework Quantum General Relativity (Kluwer Academic, Dordrecht, 1992).

    Google Scholar 

  24. J. Norton, Einstein and the History of General Relativity, D. Howard and J. Stachel, eds. (Birkhäuser, Boston, 1989).

    Google Scholar 

  25. N. Rosen, Proc. Israel Acad. Sci. Hum. 1, 12 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, W.A., Sharif, M. Equivalence Principle and the Principle of Local Lorentz Invariance. Foundations of Physics 31, 1785–1806 (2001). https://doi.org/10.1023/A:1012627118064

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012627118064

Keywords

Navigation