Skip to main content
Log in

Machine Learning on the Basis of Formal Concept Analysis

  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

A model of machine learning from positive and negative examples (JSM-learning) is described in terms of Formal Concept Analysis (FCA). Graph-theoretical and lattice-theoretical interpretations of hypotheses and classifications resulting in the learning are proposed. Hypotheses and classifications are compared with other objects from domains of data analysis and artificial intelligence: implications in FCA, functional dependencies in the theory of relational data bases, abduction models, version spaces, and decision trees. Results about algorithmic complexity of various problems related to the generation of formal concepts, hypotheses, classifications, and implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Birkhoff, G.D., Lattice Theory, Providence: AMS, 1979. Translated under the title Teoriya reshetok, Moscow: Nauka, 1984.

    Google Scholar 

  2. Vinogradov, D.V., Formalization of Plausible Reasoning in Predicate Logic, Nauch. Tekh. Inf., Ser. 2, 2000, no. 3, pp. 17–20.

  3. Grätzer, G., General Lattice Theory, Basel: Brikhäuser, 1978. Translated under the title Obshchaya teoriya reshetok, Moscow: Mir, 1982.

    Google Scholar 

  4. Gusakova, S.M. and Finn, V.K., On New Means of Formalizing the Notion of Similarity, Nauch. Tekh. Inf., Ser. 2, 1987, no. 10, pp. 14–22.

  5. Gusakova, S.M. and Kuznetsov, S.O., Similarity in the Generalized JSM-Method and Algorithms for Its Generation, Nauch. Tekh. Inf., Ser. 2, 1995, no. 6.

  6. Gusakova, S.M. and Pankratova, E.S., Principles of Construction of an Intelligent System of JSM Type for the Forecast of Carcinogenicity of Chemical Compounds, Nauch. Tekh. Inf., Ser. 2, 1996, no. 11, pp. 16–20.

  7. Garey, M. and Johnson, D., Computers and Intractability (A Guide to the Theory of NP-Completeness), San Francisco: Freeman, 1979. Translated under the title Vychislitel'nye mashiny i trudnoreshaemye zadachi, Moscow: Mir, 1982.

    Google Scholar 

  8. Zabezhailo, M.I., Ivashko, V.G., Kuznetsov, S.O., Mikheenkova, M.A., Khazanovskii, K.P., and Anshakov, O.M., Algorithmic and Software Means of the JSM-Method of Automated Hypotheses Generation, Nauch. Tekh. Inf., Ser. 2, 1987, no. 10, pp. 1–14.

  9. Kuznetsov, S.O., Interpretation on Graphs and Complexity Characteristics of the Search for Dependences of a Certain Type, Nauch. Tekh. Inf., Ser. 2, 1989, no. 1, pp. 23–28.

  10. Kuznetsov, S.O., JSM-Method as a System of Machine Learning, Itogi Nauki Tekh., Ser. Inf., 1991, vol. 15, pp. 17–54.

    Google Scholar 

  11. Kuznetsov, S.O., Complexity of Learning and Classiffcation Algorithms Based on the Search for Set Intersections, Nauch. Tekh. Inf., Ser. 2, 1991, no. 9, pp. 8–15.

  12. Kuznetsov, S.O., Models and Methods of Machine Learning, Itogi Nauki Tekh., Ser. Vychisl. Nauki, 1991, vol. 7, pp. 89–137.

    Google Scholar 

  13. Kuznetsov, S.O., A Fast Algorithm for Construction of All Intersections of Objects from a Finite Semilattice, Nauch. Tekh. Inf., Ser. 2, 1993, no. 1, pp. 17–20.

  14. Kuznetsov, S.O. and Finn, V.K., On Models of Learning Based on Operation of Similarity, Obozrenie Prikl. Promyshl. Mat., 1996, vol. 3, no. 1, pp. 66–90.

    Google Scholar 

  15. Maier, D., The Theory of Relational Databases, Rockville: Computer Science Press, 1983. Translated under the title Teoriya relyatsionnykh baz dannykh, Moscow: Mir, 1987.

    Google Scholar 

  16. Finn, V.K., On Computer-Oriented Formalization of Plausible Reasoning in F.Bacon-J.S.Mill Style, Semiotika Inf., 1983, vol. 20, pp. 35–101.

    Google Scholar 

  17. Finn, V.K., Plausible Inference and Plasuible Reasoning, Itogi Nauki Tekh., Ser. Teor. Veroyatn. Mat. Statist. Teor. Kibern., 1988, vol. 28, pp. 3–84.

    Google Scholar 

  18. Finn, V.K., On Generalized JSM-Method of Automated Hypothesis Generation, Semiotika Inf., 1989, vol. 29, pp. 93–123.

    Google Scholar 

  19. Finn, V.K., Plausible Reasoning in Intelligent Systems of JSM-type, Itogi Nauki Tekh., Ser. Inf., 1991, vol. 15, pp. 54–101.

    Google Scholar 

  20. Anshakov, O.M., Finn, V.K., and Skvortsov, D.P., On Axiomatization of Many-Valued Logics Associated with the Formalization of Plausible Reasonings, Stud. Log., 1989, vol. 25, no. 4, pp. 23–47.

    Google Scholar 

  21. Armstrong, W.W., Dependency Structure of Data Base Relationships, IFIP Congress, Geneva, 1974, pp. 580–583.

  22. Barbut, M. and Monjardet, B., Ordre et classiffcation, II, Paris: Hachette, 1970.

    Google Scholar 

  23. Birkhoff, G.D., Lattice Theory, Providence: AMS, 1979.

    Google Scholar 

  24. Bordat, J.P., Calcul pratique du treillis de Galois d'une correspondance, Math. Sci. Hum., 1986, no. 96, pp. 31–47.

  25. Bylander, T., Allemang, D., Tanner, M.C., and Josephson, J.R., The Computational Complexity of Abduction, Artif. Intell., 1991, vol. 49, no. 1, pp. 25–60.

    Google Scholar 

  26. Chein, M., Algorithme de recherche des sous-matrices premières d'une matrice, Bull. Math. R.S. Roumanie, 1969, vol. 13, no. 1, pp. 21–25.

    Google Scholar 

  27. Codd, E.F., A Relational Model for Large Shared Data Banks, Comm. ACM., 1970, vol. 13, pp. 377–387.

    Google Scholar 

  28. Davey, B.A. and Priestley, H.A., Introduction to Lattices and Order, Cambridge: Cambridge Univ. Press, 1990.

    Google Scholar 

  29. Demetrovics, J., Libkin, L., and Muchnik, I., Functional Dependencies in Relational Databases: A Lattice Point of View, Discrete Appl. Math., 1992, vol. 40, pp. 155–185.

    Google Scholar 

  30. Duquenne, V. and Guigues, J.-L., Familles minimales d'implications informatives resultant d'un tableau de donnés binaires, Math. Sci. Humaines, 1986, vol. 95, pp. 5–18.

    Google Scholar 

  31. Freese, R., Ježek, J., and Nation, J.B., Free Lattices, Providence: AMS, 1995.

    Google Scholar 

  32. Ganter, B., Two Basic Algorithms in Concept Analysis, FB4-Preprint no. 831, TH Darmstadt, 1984.

  33. Ganter, B., Algorithmen zur Formalen Begriffsanalyse, in: Beiträge zur Begriffsanalyse, Ganter, B., Wille, R., and Wolf, K.E., Eds., Hrsg., Mannheim: B.-I. Wissenschaftsverlag, 1987.

    Google Scholar 

  34. Ganter, B. and Wille, R., Formal Concept Analysis: Mathematical Foundations, Berlin: Springer, 1999.

    Google Scholar 

  35. Ganter, B. and Reuter, K., Finding All Closed Sets: A General Approach, Order, 1991, vol. 8, pp. 283–290.

    Google Scholar 

  36. Ganter, B. and Kuznetsov, S.O., Stepwise Construction of the Dedekind-MacNeille Completion, 6th Int. Conf. on Conceptual Structures, ICCS'98, 1998, vol. 1453, pp. 295–302.

    Google Scholar 

  37. Ganter, B. and Kuznetsov, S.O., Formalizing Hypotheses with Concepts, 8th Int. Conf. on Conceptual Structures, ICCS'98, 2000, vol. 1867, pp. 342–356.

    Google Scholar 

  38. Ganter, B. and Kuznetsov, S.O., Pattern Structures and Their Projections, 9th Int. Conf. on Conceptual Structures, ICCS'98.

  39. Garey, M. and Johnson, D., Computers and Intractability: A Guide to the Theory of NP-Completeness, New York: Freeman, 1979.

    Google Scholar 

  40. Godin, R., Missaoui, R., and Allaoui, H., Incremental Concept Formation Algorithms Based on Galois Lattices, Comput. Intell., 1995.

  41. Goldberg, L.A., Efficient Algorithms for Listing Combinatorial Structures, Cambridge: Cambridge Univ. Press, 1993.

    Google Scholar 

  42. Guénoche, A., Construction du treillis de Galois d'une relation binaire, Math. Inf. Sci. Hum., 1990, no. 109, pp. 41–53.

  43. Gunter, C.A., Ngair, T.-H., and Subramanian, D., The Common Order-Theoretic Structure of Version Spaces and ATMSs, Artif. Intell., 1997, vol. 95, pp. 357–407.

    Google Scholar 

  44. Hirsh, H., Generalizing Version Spaces, Machine Learning, 1994, vol. 17, pp. 5–46.

    Google Scholar 

  45. Hirsh, H., Mishra, N., and Pitt, L., Version Spaces without Boundary Sets, 14th National Conference on Artificial Intelligence (AAAI97), 1997.

  46. Johnson, D.S., Yannakakis, M., and Papadimitriou, C.H., On Generating All Maximal Independent Sets, Inf. Process. Lett., 1988, vol. 27, pp. 119–123.

    Google Scholar 

  47. Kuznetsov, S.O., Mathematical Aspects of Concept Analysis, J. Math. Sci., Ser. Contemp. Math. Appl., 1996, vol. 18, pp. 1654–1698.

    Google Scholar 

  48. Kuznetsov, S.O., Learning of Simple Conceptual Graphs from Positive and Negative Examples, in: Zytkow, J. and Rauch, J., Eds., Principles of Data Mining and Knowledge Discovery, Third European Conference, PKDD'99, Lecture Notes in Artificial Intelligence, 1999, vol. 1704, pp. 384–392.

  49. Kuznetsov, S.O., Some Counting and Decision Problems in Formal Concept Analysis, Preprint of the Technische Universität Dresden, 1999, MATH-Al–14–1999.

  50. Kuznetsov, S.O. and Obiedkov, S.A., Algorithms for the Construction of the Set of All Concepts and Their Line Diagram, Preprint of the Technische Universität Dresden, 2000, MATH-Al–05–2000.

  51. Luxenburger, M., Implications partielles dans un contexte, Math. Inf. Sci. Hum., 1991, vol. 29, no. 113, pp. 35–55.

    Google Scholar 

  52. Mannila, H. and Räihä, K.J., The Design of Relational Databases, Reading: Addison-Wesley, 1992.

    Google Scholar 

  53. Michalski, R.S. and Stepp, R.E., Learning from Observation: Conceptual Clustering, in Machine Learning: An Artificial Intelligence Approach, Michalski, R.S., Carbonell, J.G., and Mitchell T.M., Eds., Palo Alto: Tioga, 1983, pp. 41–81.

    Google Scholar 

  54. Mitchell, T., Version Space: An Approach to Concept Learning, PhD Thesis, Stanford Univ., 1978.

  55. Mitchell, T., Generalization as Search, Artif. Intell., 1982, vol. 18, no. 2.

  56. Mitchell, T., Machine Learning, New York: McGraw-Hill, 1997.

    Google Scholar 

  57. Norris, E.M., An Algorithm for Computing the Maximal Rectangles in a Binary Relation, Rev. Roum. Math. Pures Appl., 1978, vol. 23, no. 2, pp. 243–250.

    Google Scholar 

  58. Nourine, L. and Raynaud, O., A Fast Algorithm for Building Lattices, Inf. Process. Lett., 1999, vol. 71, pp. 199–204.

    Google Scholar 

  59. Papadimitriou, C.H. and Yannakakis, M., The Complexity of Facets (and Some Facets of Complexity), J. Comp. Sys. Sci., 1984, vol. 28, pp. 244–259.

    Google Scholar 

  60. Plotkin, G.D., A Note on Inductive Generalization, Machine Intell., 1970, no. 3, pp. 153–163.

  61. Plotkin, G.D., A Further Note on Inductive Generalization, Machine Intell., 1971, no. 6, pp. 101–124.

  62. Pudlak, P. and Springsteel, F., Complexity in Mechanized Hypothesis Formation, Theor. Comp. Sci., 1979, vol. 8, no. 2, pp. 203–225.

    Google Scholar 

  63. Quilllian, M.R., Semantic Memory, in: Semantic Information Processing, Minsky, M., Ed., Cambridge: MIT Press, 1968, pp. 227–270.

    Google Scholar 

  64. Quinlan, J.R., Induction on Decision Trees, Mach. Learn., 1986, vol. 1, no. 1, pp. 81–106.

    Google Scholar 

  65. Skorsky, M., Endliche Verbände-Diagramme und Eigenschaften, Dissertation, TH Darmstadt, 1992.

  66. Smirnov, E.N. and Braspenning, P.J., Version Space Learning with Instance-Based Boundary Sets, in: Prade, H., Ed., Proceedings 13th European Conference on Artificial Intelligence, Chichester: Wiley, 1998, pp. 460–464.

    Google Scholar 

  67. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., and Lakhal, L., Fast Computation of Concept Lattices Using Data Mining Techniques, 7th International Workshop on Knowledge Representation Meets Databases, Berlin, 2000, pp. 129–139.

  68. Stumme, G., Wille, R., and Wille, U., Conceptual Knowledge Discovery in Databases Using Formal Concept Analysis Methods, 2nd European Symposium on Principles of Data Mining and Knowledge Discovery, Nantes, 1998.

  69. Valiant, L.G., The Complexity of Computing the Permanent, Theor. Comp. Sci., 1979, vol. 8, no. 2, pp. 189–201.

    Google Scholar 

  70. Valiant, L.G., The Complexity of Enumeration and Reliability Problems, SIAM J. Comput., 1979, vol. 8, no. 3, pp. 410–421.

    Google Scholar 

  71. Waiyamai, K. and Lakhal, L., Knowledge Discovery from Very Large Databases Using Frequent Concept Lattices, 11th European Conference on Machine Learning (ECML 2000), 2000, pp. 437–445.

  72. Wild, M., Implicational Bases for Finite Closure Systems, in: Arbeitstagung, Begriffsanalyse und Künstliche Intelligenz, Lex, W., Ed., 1991, pp. 147–169.

  73. Wille, R., Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts, in: Ordered Sets, Rival, I., Ed., Dordrecht: Reidel, 1982, pp. 445–470.

    Google Scholar 

  74. Wille, R., Concept Lattices and Conceptual Knowledge Systems, Comput. Math. Appl., 1992, vol. 23, no. 6–9, pp. 493–515.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, S.O. Machine Learning on the Basis of Formal Concept Analysis. Automation and Remote Control 62, 1543–1564 (2001). https://doi.org/10.1023/A:1012435612567

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012435612567

Keywords

Navigation