Skip to main content
Log in

Variational Scheme for the Mott Transition

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The Hubbard model is studied at half filling, using two complementary variational wave functions, the Gutzwiller ansatz for the metallic phase at small values of the interaction parameter U and its analog for the insulating phase at large values of U. The metallic phase is characterized by the Drude weight, which exhibits a jump at the critical point Uc. In the insulating phase the system behaves as a collection of dipoles which increase both in number and in size as U gets smaller. The two wave functions are able to describe the two asymptotic regimes (small and large values of U, respectively), but they can no longer be trusted in the region of the Mott transition (U≈Uc). More powerful methods are needed to study, for instance, the divergence of the electric susceptibility for U→Uc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).

    Google Scholar 

  2. M. C. Gutzwiller, Phys. Rev. 134, A923 (1964).

    Google Scholar 

  3. M. C. Gutzwiller, Phys. Rev. 137, A1726 (1965).

    Google Scholar 

  4. R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

    Google Scholar 

  5. D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984).

    Google Scholar 

  6. R. G. Parr, D. P. Craig, and I. G. Ross, J. Chem. Phys. 18, 1561 (1950).

    Google Scholar 

  7. R. G. Parr, J. Chem. Phys. 20, 1499 (1952).

    Google Scholar 

  8. R. Pariser and R. G. Parr, J. Chem. Phys. 21, 767 (1953).

    Google Scholar 

  9. J. A. Pople, Trans. Faraday Soc. 49, 1375 (1953).

    Google Scholar 

  10. P. W. Anderson, Phys. Rev. 115, 2 (1959).

    Google Scholar 

  11. J. Hubbard, Proc. Roy. Soc. (London) A 276, 238 (1963).

    Google Scholar 

  12. For a review see, D. Baeriswyl, D. K. Campbell, and S. Mazumdar, in Conjugated Conducting Polymers, H. Kiess, ed., Springer Series in Solid-State Sciences, Vol. 102 (Springer, New York, 1992), p. 7.

    Google Scholar 

  13. See, A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Rev. Mod. Phys. 60, 781 (1988).

    Google Scholar 

  14. E. Jeckelmann and D. Baeriswyl, Synth. Met. 65, 211 (1994).

    Google Scholar 

  15. E. Jeckelmann, Phys. Rev. B 57, 11838 (1998).

    Google Scholar 

  16. J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).

    Google Scholar 

  17. See, D. Vollhardt, N. Blümer, K. Held, M. Kollar, J. Schlipf, and M. Ulmke, Z. Phys. B 103, 283 (1997), and references therein.

    Google Scholar 

  18. N. F. Mott, Proc. Phys. Soc. 62, 416 (1949).

    Google Scholar 

  19. N. F. Mott, Metal-Insulator Transitions (Taylor & Francis, London, 1974).

    Google Scholar 

  20. J. Hubbard, Proc. Roy. Soc. (London) A 281, 401 (1964).

    Google Scholar 

  21. W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 4302 (1970).

    Google Scholar 

  22. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

    Google Scholar 

  23. For a review see, A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Google Scholar 

  24. J. Schlipf, M. Jarell, P. G. J. van Dongen, N. Blümer, S. Kehrein, Th. Pruschke, and D. Vollhardt, Phys. Rev. Lett. 82, 4890 (1999).

    Google Scholar 

  25. M. J. Rozenberg, R. Chitra, and G. Kotliar, Phys. Rev. Lett. 83, 3498 (1999).

    Google Scholar 

  26. W. Krauth, cond-mat/9908221.

  27. G. Kotliar, E. Lange, and M. J. Rozenberg, cond-mat/0003016.

  28. P. W. Anderson, in Frontiers and Borderlines in Many-Particle Physics, R. A. Broglia and J. R. Schrieffer, eds. (North Holland, Amsterdam, 1988), p. 1.

    Google Scholar 

  29. D. J. Scalapino, Phys. Rep. 250, 329 (1995).

    Google Scholar 

  30. S. Zhang, J. Carlson, and J. E. Gubernatis, Phys. Rev. Lett. 78, 4486 (1997).

    Google Scholar 

  31. D. Zanchi and H. J. Schulz, Phys. Rev. B 61, 13609 (2000).

    Google Scholar 

  32. C. J. Halboth and W. Metzner, Phys. Rev. B 61, 7364 (2000).

    Google Scholar 

  33. For a recent review see, J. Orenstein and A. J. Millis, Science 288, 468 (2000).

    Google Scholar 

  34. For an early review see, R. Micnas, J. Ranninger, and S. Robaskiewicz, Rev. Mod. Phys. 62, 113 (1990).

    Google Scholar 

  35. M. Randeria, in Bose_Einstein Condensation, A. Griffin et al., eds. (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  36. E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989); Erratum ibid., 1927 (1989).

    Google Scholar 

  37. R. M. Wilcox, J. Math. Phys. 8, 962 (1967).

    Google Scholar 

  38. D. Baeriswyl, Proc. Int. Conf. on Nonlinearity in Condensed Matter, Springer Series in Solid-State Sciences, Vol. 69 (Springer, New York, 1987), p. 183.

    Google Scholar 

  39. H. Otsuka, J. Phys. Soc. Jpn. 61, 1645 (1992).

    Google Scholar 

  40. M. Dzierzawa, D. Baeriswyl, and M. Di Stasio, Phys. Rev. B 51, 1993 (1995).

    Google Scholar 

  41. F. Gebhard and A. E. Ruckenstein, Phys. Rev. Lett. 68, 244 (1992).

    Google Scholar 

  42. W. Kohn, Phys. Rev. 133, A171 (1964).

    Google Scholar 

  43. B. S. Shastry and B. Sutherland, Phys. Rev. Lett. 65, 243 (1990).

    Google Scholar 

  44. A. J. Millis and S. N. Coppersmith, Phys. Rev. B 43, 13770 (1991).

    Google Scholar 

  45. M. Dzierzawa, D. Baeriswyl, and L.M. Martelo, Helv. Phys. Acta 70, 124 (1997).

    Google Scholar 

  46. P. W. Anderson, Basic Notions of Condensed Matter Physics (Benjamin/Cummings, Menlo Park, California, 1984).

    Google Scholar 

  47. D. Baeriswyl, C. Gros, and T. M. Rice, Phys. Rev. B 35, 8391 (1987).

    Google Scholar 

  48. D. Pines and P. Nozières, The Theory of Quantum Liquids (W. A. Benjamin, New York, 1966).

    Google Scholar 

  49. J. C. Slater, Phys. Rev. 82, 538 (1951).

    Google Scholar 

  50. H. Yokoyama and H. Shiba, J. Phys. Soc. Japan 56, 3582 (1987).

    Google Scholar 

  51. L. M. Martelo, M. Dzierzawa, L. Siffert, and D. Baeriswyl, Z. Phys. B 103, 335 (1997).

    Google Scholar 

  52. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 59, 121 (1987).

    Google Scholar 

  53. H. Yokoyama and H. Shiba, J. Phys. Soc. Japan 56, 1490 (1987).

    Google Scholar 

  54. C. Gros, R. Joynt and T. M. Rice, Phys. Rev. B 36, 381 (1987).

    Google Scholar 

  55. F. Gebhard and A. Girndt, Z. Phys. B 93, 455 (1994).

    Google Scholar 

  56. C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, 1388 (1969).

    Google Scholar 

  57. F. D. M. Haldane, Phys. Rev. Lett. 60, 635 (1988).

    Google Scholar 

  58. B. S. Shastry, Phys. Rev. Lett. 60, 639 (1988).

    Google Scholar 

  59. T. Kennedy, E. H. Lieb, and B. S. Shastry, Phys. Rev. Lett. 61, 2582 (1988).

    Google Scholar 

  60. C. Aebischer, D. Baeriswyl, and R. M. Noack, cond-mat/0006354.

  61. N. F. Mott, Philos. Mag. 26, 1015 (1972).

    Google Scholar 

  62. C. Aebischer, D. Baeriswyl, and R. M. Noack, unpublished.

  63. C. A. Stafford and A. J. Millis, Phys. Rev. B 48, 1409 (1993).

    Google Scholar 

  64. S. Sorella and E. Tosatti, Europhys. Lett. 19, 699 (1992).

    Google Scholar 

  65. M. Capone, L. Capriotti, F. Becca, and S. Caprara, cond-mat/0006437.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baeriswyl, D. Variational Scheme for the Mott Transition. Foundations of Physics 30, 2033–2048 (2000). https://doi.org/10.1023/A:1003785323041

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003785323041

Keywords

Navigation