Skip to main content
Log in

Direct and Indirect Searches for Low-Mass Magnetic Monopoles

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Recently, there has been renewed interest in the search for low-mass magnetic monopoles. At the University of Oklahoma we are performing an experiment (Fermilab E882) using material from the old D0 and CDF detectors to set limits on the existence of Dirac monopoles of masses of the order of 500 GeV. To set such limits, estimates must be made of the production rate of such monopoles at the Tevatron collider, and of the binding strength of any such produced monopoles to matter. Here we sketch the still primitive theory of such interactions, and indicate why we believe a credible limit may still be obtained. On the other hand, there have been proposals that the classic Euler–Heisenberg Lagrangian together with duality could be employed to set limits on magnetic monopoles having masses less than 1 TeV, based on virtual, rather than real processes. The D0 collaboration at Fermilab has used such a proposal to set mass limits based on the nonobservation of pairs of photons each with high transverse momentum. We critique the underlying theory, by showing that the cross section violates unitarity at the quoted limits and is unstable with respect to radiative corrections. We therefore believe that no significant limit can be obtained from the current experiments, based on virtual monopole processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. A. M. Dirac, Proc. Roy. Soc. (London) A 133, 60 (1931); Phys. Rev. 74, 817 (1948).

    Google Scholar 

  2. J. Schwinger, Phys. Rev. 144, 1087 (1966), 173, 1536 (1968).

    Google Scholar 

  3. J. Schwinger, Phys. Rev. D 12, 3105 (1975).

    Google Scholar 

  4. T. T. Wu and C. N. Yang, in Properties of Matter Under Unusual Conditions, H. Mark and S. Fernbach, eds. (Wiley, New York, 1969), p. 349; Phys. Rev. D 12, 3843 (1975). A. M. Polyakov, JETP Lett. 20, 194 (1974). Y. Nambu, Phys. Rev. D 10, 4262 (1974). G. 't Hooft, Nucl. Phys. 879, 276 (1974). B. Julia and A. Zee, Phys. Rev. D 11, 2227 (1975).

    Google Scholar 

  5. J. Preskill, Ann. Rev. Nucl. Sci. 34, 461 (1984). T. W. Kirkman and C. K. Zachos, Phys. Rev. D 24, 999 (1981).

    Google Scholar 

  6. For example, M. Turner, Phys. Lett. 115B, 95 (1982).

    Google Scholar 

  7. P. H. Eberhard et al., Phys. Rev. D 4, 3260 (1971). R. R. Ross et al., Phys. Rev. D 8, 698 (1973). P. B. Price, Shi-lun Guo, S. P. Ahlen, and R. L. Fleischer, Phys. Rev. Lett. 52, 1264 (1984). B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982); 51, 1933 (1983); 55, 25 (1985). H. Jeon and M. J. Longo, Phys. Rev. Lett. 75, 1443 (1995), Erratum 76, 159 (1996). M. Ambrosio et al., Phys. Lett. B 406, 249 (1997).

    Google Scholar 

  8. P. B. Price, R. Guoxiao, and K. Kinoshita, Phys. Rev. Lett. 59, 2523 (1987). P. B. Price, J. Guiri, and K. Kinoshita, Phys. Rev. Lett. 65, 149 (1990).

    Google Scholar 

  9. A. De Rújula, Nucl. Phys. B 435, 257 (1995).

    Google Scholar 

  10. M. Acciarri et al., Phys. Lett. B 345, 609 (1995).

  11. I. F. Ginzburg and S. L. Panfil, Yad. Fiz. 36, 1461 (1982) [Sov. J. Nucl. Phys. 36, 850 (1982)].

    Google Scholar 

  12. I. F. Ginzburg and A. Schiller, Phys. Rev. D 57, R6599 (1998); 60, 075016 (1999).

    Google Scholar 

  13. B. Abbott et al., Phys. Rev. Lett. 81, 524 (1998).

    Google Scholar 

  14. S. Graf, A. Schäfer, and W. Greiner, Phys. Lett. B 262, 463 (1991).

    Google Scholar 

  15. J. Schwinger, Particles, Sources, and Fields, Vol. 2 (Addison-Wesley, Reading, MA, 1973).

    Google Scholar 

  16. D. Zwanziger, Phys. Rev. D 3, 880 (1971).

    Google Scholar 

  17. L. Gamberg and K. A. Milton, Phys. Rev. D 61, 075013 (2000).

    Google Scholar 

  18. J. Schwinger, K. A. Milton, W.-y. Tsai, L. L. DeRaad, Jr., and D. C. Clark, Ann. Phys. (N.Y.) 101, 451 (1976).

    Google Scholar 

  19. K. A. Milton and L. L. DeRaad, Jr., J. Math. Phys. 19, 375 (1978).

    Google Scholar 

  20. L. F. Urrutia, Phys. Rev. D 18, 3031 (1978). See also F. R. Ore, Jr., Phys. Rev. D 13, 2295 (1976).

    Google Scholar 

  21. For example, J. Schwinger, L. L. DeRaad, Jr., K. A. Milton, and W.-y. Tsai, Classical Electrodynamics (Advanced Book Program, Perseus Books Group, 1998).

  22. P. Osland and T. T. Wu, Nucl. Phys. B 247, 421, 450 (1984); B 256, 13, 32 (1985). P. Osland, C. L. Schultz, and T. T. Wu, Nucl. Phys. B 256, 449 (1985). P. Osland and T. T. Wu, Nucl. Phys. B 261, 687 (1985).

    Google Scholar 

  23. W. V. R. Malkus, Phys. Rev. 83, 899 (1951).

    Google Scholar 

  24. L. Bracci and G. Fiorentini, Nucl. Phys. B 232, 236 (1984).

    Google Scholar 

  25. D. Sivers, Phys. Rev. D 2, 2048 (1970).

    Google Scholar 

  26. K. Olaussen and R. Sollie, Nucl. Phys. B 255, 465 (1985).

    Google Scholar 

  27. Y. Kazama and C. N. Yang, Phys. Rev. D 15, 2300 (1977).

    Google Scholar 

  28. K. Olaussen, H. A. Olsen, P. Osland, and I. Øverbø, Nucl. Phys. B 228, 567 (1983).

    Google Scholar 

  29. T. F. Walsh, P. Weisz, and T. T. Wu, Nucl. Phys. B 232, 349 (1984).

    Google Scholar 

  30. H. A. Olsen, P. Osland, and T. T. Wu, Phys. Rev. D 42, 665 (1990). H. A. Olsen and P. Osland, Phys. Rev. D 42, 690 (1990).

    Google Scholar 

  31. John Furneaux, private communication.

  32. C. J. Goebel, in '83, J. L. Stone, ed. (Plenum, New York, 1984), p. 333.

    Google Scholar 

  33. E. Goto, H. Kolm, and K. Ford, Phys. Rev. 132, 387 (1963).

    Google Scholar 

  34. R. A. Carrigan, Jr., B. P. Strauss, and G. Giacomelli, Phys. Rev. D 17, 1754 (1978).

    Google Scholar 

  35. J. Schwinger, Phys. Rev. 82, 664 (1951).

    Google Scholar 

  36. E. Lifshitz and L. Pitayevski, Relativistic Quantum Theory, Part 2 (Pergamon, Oxford, 1974).

    Google Scholar 

  37. W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936). V. Weisskopf, Kgl. Danske Videnskab. Selskab. Mat.-fys. Medd. 14, No. 6, (1936).

    Google Scholar 

  38. D. A. Dicus, C. Kao, and W. W. Repko, Phys. Rev. D 57, 2443 (1998).

    Google Scholar 

  39. S. Laporta and E. Remiddi, Phys. Lett. B 265, 182 (1991); B 301, 440 (1993).

    Google Scholar 

  40. S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, Cambridge, 1995), Vol. I, p. 523.

    Google Scholar 

  41. J. Halter, Phys. Lett. B 316, 155 (1993).

    Google Scholar 

  42. M. Bordag, D. Robaschik, and E. Wieczorek, Ann. Phys. (N.Y.) 165, 192 (1985). M. Bordag and J. Lindig, Phys. Rev. D 58, 045003 (1998).

    Google Scholar 

  43. V. I. Ritus, Zh. Eksp. Teor. Fiz. 69, 1517 (1975) [Sov. Phys.-JETP 42, 774 (1976)].

    Google Scholar 

  44. M. Reuter, M. G. Schmidt, and C. Schubert, Ann. Phys. (N.Y.)259, 313 (1997). D. Fliegner, M. Reuter, M. G. Schmidt, and C. Schubert, Theor. Math. Phys. 113, 1442 (1997).

    Google Scholar 

  45. A. S. Goldhaber, Phys. Rev. 140, B1407 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamberg, L., Kalbfleisch, G.R. & Milton, K.A. Direct and Indirect Searches for Low-Mass Magnetic Monopoles. Foundations of Physics 30, 543–565 (2000). https://doi.org/10.1023/A:1003668812097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003668812097

Keywords

Navigation