Advertisement

Pharmacy World and Science

, Volume 26, Issue 2, pp 90–95 | Cite as

Methodological validation of monitoring indicators of antibiotics use in hospitals

  • Bruno Mandy
  • Estelle Koutny
  • Christian Cornette
  • Marie-Christine Woronoff-Lemsi
  • Daniel Talon
Article

Abstract

Background: For several years now, the French national recommendations have been trying to set up a surveillance system in hospitals to link data on antibiotic resistance and data on the use of antibiotics, particularly for certain ‘micro-organism/antibiotic’ pairs. The indicators recommended in the lastest newsletter of the Direction Générale de la Santé (French Public Health Department) for monitoring the consumption of antibiotics were the number of days of treatment or the number of defined daily doses (DDD), both (in)directly related to the number of days of hospitalisation and/or the number of patients hospitalised.

Objective: The aim of this study was to compare the actual number of days of treatment, which is an observed indicator, with two indicators calculated on the basis of the DDD and the DPD (daily prescribed dose), both in terms of feasibility of collection and the relevance of the information generated.

Materials and methods: For several hospital care units, the ‘length of exposure’ to a given antibiotic was determined by four different indicators: two actual observed indicators [the patient's medical file (reference) and the named-patient based, computerised dispensing system from the central pharmacy] and two derived calculated indicators [obtained by dividing the number of grams prescribed by the DDD or by the DPD].

Results: The average incidence density of antibiotic treatment (length of exposure per 1000 days of hospitalisation) obtained by the calculated indicators was higher than that obtained with the observed reference (+ 52% for the DDD and + 33% for the DPD) but lower than that obtained with the second observed indicator (computerised system) (-10%). The differences were large and random (high variability depending on the hospital department, the antibiotic and the administration route; variations in both directions: actual length of treatment longer or shorter than the calculated length of treatment).

Conclusion: The question which indicator should be chosen is inconclusive for the evaluation of the selection pressure exerted by an antibiotic. The two indicators proposed in the newsletter (observed indicator and calculated indicator) seem to be complementary for use in a regional or national network to monitor resistance and consumption of antibiotics. Each hospital should validate the indicators and define for itself which indicator is most appropriate for estimating the actual length of antibiotic exposure. This may imply different indicators for different units, antibiotics or even administration routes within one particular hospital setting. Once validated the hospital has a powerful tool generating data that can be linked to resistance data.

Antibiotic selection pressure France Indicators Length of treatment Selection pressure Validation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agence Nationale pour le Développement de l'Evaluation Médicale. Recommandations pour la pratique clinique. Le bon usage des antibiotiques à l'hôpital, recommandations pour maîtriser le développement de la résistance bactérienne. Paris: ANDEM, 1996.Google Scholar
  2. 2.
    Institut National de Veille Sanitaire. Propositions d'un plan national d'actions pour la maîtrise de la résistance aux antibiotiques. Paris: Institut de Veille Sanitaire, 1999.Google Scholar
  3. 3.
    Direction générale de la Santé. Circulaire DHOS/E2-DGS/SDSA-N° 272 du 2 mai 2002 relative au bon usage des antibiotiques dans les établissements de santé et à la mise en place à titre expérimental de centres de conseil en antibiothérapie pour les médecins libéraux. Paris: DGS, 2002.Google Scholar
  4. 4.
    Observatoire National pour l'Etude de la Résistance Bactérienne aux Antibiotiques (ONERBA). Recommandations méthodologiques pour la surveillance de la résistance aux antibiotiques dans les laboratoires de microbiologie. ONERBA, 2000.Google Scholar
  5. 5.
    Comité Technique national des Infections Nosocomiales. Maîtrise de la diffusion des bactéries multirésistantes aux antibiotiques. Comité Technique National des Infections Nosocomiales, 1999.Google Scholar
  6. 6.
    Bertrand X, Floret N, Thouverez M, Talon D. Staphylococcus aureus résistant à la méticilline. Importance et sensibilité aux autres antibiotiques en Franche-Comté en 1998. HygièneS 2000; 8: 205-10.Google Scholar
  7. 7.
    Observatoire National pour l'Etude de la Résistance Bactérienne aux Antibiotiques (ONERBA). Les S. aureus résistants à la méticilline (SARM) vus de l'hôpital en 1997. Rapport technique de synthèse pour l'année 1997, résultats. Observatoire National de l'Epidémiologie de la Résistance Bactérienne aux Antibiotiques, 1998.Google Scholar
  8. 8.
    Fridkin SK, Steward CD, Edwards JR, Pryor ER, McGowan JE, Archibald LK et al. Surveillance of antimicrobial use and antimicrobial resistance in United States hospitals: project ICARE phase 2. Clin Infect Dis 1999; 29: 245-52.Google Scholar
  9. 9.
    Crowcroft NS, Ronveaux O, Monnet DL, Mertens R. Methicillinresistant Staphylococcus aureus and antimicrobial use in Belgian hospitals. Infect Control Hosp Epidemiol 1999; 20: 31-6.Google Scholar
  10. 10.
    Harbarth S, Harris AD, Carmeli Y, Samore MH. Parallel analysis of individual and aggregated data on antibiotic exposure and resistance in Gram-negative bacilli. Clin Infect Dis 2001; 33: 1462-8.Google Scholar
  11. 11.
    Natsch S, Hekster YA, de Jong R, Heerding ER, Herings RM, van der Meer JW. Application of the ATC/DDD methodology to monitor antibiotic drug use. Eur J Clin Microbiol Infect Dis 1998; 17: 20-4.Google Scholar
  12. 12.
    Monnet DL, Archibald LK, Phillips L, Tenover FC, McGowan JE Jr, Gaynes RP, the Intensive Care Antimicrobial Resistance Epidemiology Project and the National Nosocomial Infections Surveillance System Hospitals. Antimicrobial use and resistance in eight US hospitals: complexities of analysis and modelling. Infect Control Hosp Epidemiol 1998; 19: 388-94.Google Scholar
  13. 13.
    White RL, Friedrich LV, Mihm LB, Bosso JA. Assessment of the relationship between antimicrobial usage and susceptibility: differences between the hospital and specific patient-care areas. Clin Infect Dis 2000; 31: 16-23.Google Scholar
  14. 14.
    Fukatsu K, Saito H, Matsuda T, Ikeda S, Furukawa S, Muto T. Influences of type and duration of antimicrobial prophylaxis on an outbreak of methicillin-resistant Staphylococcus aureus and on the incidence of wound infection. Arch Surg 1997; 132: 1320-5.Google Scholar
  15. 15.
    McGowan JE Jr. Antimicrobial resistance in hospital microorganisms and its relation to antibiotic use. Rev Infect Dis 1983; 5: 1033-48.Google Scholar
  16. 16.
    Lopez-Lozano JM, Monnet DL, Yagüe A, Campillos P, Gonzalo N, Burgos A. Surveillance de la résistance bactérienne et modélisation de sa relation avec les consommations d'antibiotiques au moyen de l'analyse des séries chronologiques. Bull Soc Fr Microbiol 2002; 17: 105-15.Google Scholar
  17. 17.
    Sloos JH, van de Klundert JAM, Dijkshoorn L, van Boven CPA. Changing susceptibilities of coagulase-negative staphylococci to teicoplanin in a teaching hospital. J Antimicrob Chemother 1998; 42: 787-91.Google Scholar
  18. 18.
    Lopez-Lozano JM, Monnet DL, Burgos Sanjose A, Gonzalo N, Campillos P, Yagüe A. Modelling and forecasting antimicrobial resistance and its dynamic relationship to antimicrobial use: a time series analysis. Int J Antimicrob Agents 2000; 14: 21-31.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Bruno Mandy
    • 1
  • Estelle Koutny
    • 2
  • Christian Cornette
    • 2
  • Marie-Christine Woronoff-Lemsi
    • 2
  • Daniel Talon
    • 2
  1. 1.Pharmacie CentraleBesançonFrance
  2. 2.Service d'Hygiène HospitalièreBesançonFrance

Personalised recommendations