Nutrient Cycling in Agroecosystems

, Volume 70, Issue 2, pp 147–160 | Cite as

Effect of climate change on greenhouse gas emissions from arable crop rotations

  • Jørgen E. Olesen
  • Gitte H. Rubæk
  • Tove Heidmann
  • Søren Hansen
  • Christen D. Børgensen


The DAISY soil–plant–atmosphere model was used to simulate crop production and soil carbon (C) and nitrogen (N) turnover for three arable crop rotations on a loamy sand in Denmark under varying temperature, rainfall, atmospheric CO2 concentration and N fertilization. The crop rotations varied in proportion of spring sown crops and use of N catch crops (ryegrass). The effects on CO2 emissions were estimated from simulated changes in soil C. The effects on N2O emissions were estimated using the IPCC methodology from simulated amounts of N in crop residues and N leaching. Simulations were carried out using the original and a revised parameterization of the soil C turnover. The use of the revised model parameterization increased the soil C and N turnover in the topsoil under baseline conditions, resulting in an increase in crop N uptake of 11 kg N ha–1 y–1 in a crop rotation with winter cereals and a reduction of 16 kg N ha–1 y–1 in a crop rotation with spring cereals and catch crops. The effect of increased temperature, rainfall and CO2 concentration on N flows was of the same magnitude for both model parameterizations. Higher temperature and rainfall increased N leaching in all crop rotations, whereas effects on N in crop residues depended on use of catch crops. The total greenhouse gas (GHG) emission increased with increasing temperature. The increase in total GHG emission was 66–234 kg CO2-eq ha–1 y–1 for a temperature increase of 4 °C. Higher rainfall increased total GHG emissions most in the winter cereal dominated rotation. An increase in rainfall of 20% increased total GHG emissions by 11–53 kg CO2-eq ha–1 y–1, and a 50% increase in atmospheric CO2 concentration decreased emissions by 180–269 kg CO2-eq ha–1 y–1. The total GHG emissions increased considerably with increasing N fertilizer rate for a crop rotation with winter cereals, but remained unchanged for a crop rotation with spring cereals and catch crops. The simulated increase in GHG emissions with global warming can be effectively mitigated by including more spring cereals and catch crops in the rotation.

Climate change CO2 Greenhouse gas emission Nitrous oxide Rainfall Temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ainsworth E.A., Davey P.A., Bernacchi C.J., Dermody O.C., Heaton E.A., Moore D.J. et al. 2002. A meta-analysis of elevated [CO2] on soybean (Glycine max) physiology, growth and yield. Global Change Biol. 8: 695–709.CrossRefGoogle Scholar
  2. Allerup P. and Madsen H. 1986. On the correction of liquid precipitation. Nordic Hydrol. 17: 237–250.CrossRefGoogle Scholar
  3. Baggs E.M., Rees R.M., Smith K.A. and Vinten A.J.A. 2000. Nitrous oxide emission from soils after incorporating crop residues. Soil Use Manage. 16: 82–87.CrossRefGoogle Scholar
  4. Bruun S., Christensen B.T., Hansen E.M., Magid J. and Jensen L.S. 2003. Calibrating and validation of the soil organic matter dynamics of the Daisy model with data from the Askov long-term experiments. Soil Biol Biochem. 35: 67–76.CrossRefGoogle Scholar
  5. Castaldi S. 2000. Responses of nitrous oxide, dinitrogen and Carbon dioxide production on oxygen consumption to temperature in forest and agricultural light-textured soils determined by model experiment. Biol. Fertil. Soils 32: 67–72.CrossRefGoogle Scholar
  6. Christensen B.T. 1990. Effect of cropping system on the soil organic matter content. I. Small-plot experiments with incorporation of straw and animal manure 1956–86. Tidsskr. Planteavl. 94: 161–170.Google Scholar
  7. Goudriaan J., van Laar H.H., van Keulen H. and Louwerse W. 1985. Photosynthesis, CO2 and plant production. In: Day W. and Atkin R.K. (eds), Wheat Growth and Modelling. NATO ASI Series, A Life Sciences, Vol. 86. Plenum Press, New York, pp. 107–122.CrossRefGoogle Scholar
  8. Groffman P.M., Gold A.J., Kellogg D.Q. and Addy K. 2000. Mechanisms, rates and assessments of N2O in groundwater, riparian zones and rivers. In: van Ham J., Baede A.P.M., Guicherit R. and Williams-Jacobse J.G.F.M. (eds), Non-CO2 greenhouse gases: Scientific understanding, control options and policy aspects. Millpress, Rotterdam, The Netherlands, pp. 159–166.Google Scholar
  9. Gödde M. and Conrad R. 1999. Immediate and adaptational temperature effects on nitric acid production and nitrous oxide release from nitrification and denitrification in two soils. Biol. Fertil. Soils 30: 33–40.CrossRefGoogle Scholar
  10. Hansen S. 1984. Estimation of potential and actual evapotranspiration. Nordic Hydrol. 15: 205–212.CrossRefGoogle Scholar
  11. Hansen S., Jensen H.E., Nielsen N.E. and Svendsen H. 1991. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY. Fert. Res. 27: 245–259.CrossRefGoogle Scholar
  12. Heidmann T., Nielsen J., Olesen S.E., Christensen B.T. and Østergaard H.S. 2001. Ændringer i indhold af kulstof og kvælstof i dyrket jord. Resultater fra kvadratnettet 1987–1998. DJF rapport Markbrug 54. Danish Institute of Agricultural Sciences, Foulum, Denmark.Google Scholar
  13. Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X. et al. 2001. Climate change 2001: The scientific basis. Contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.Google Scholar
  14. Ineson P., Coward P.A. and Hartwig U.A. 1998a. Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: The Swiss free air carbon dioxide enrichment experiment. Plant Soil 198: 89–95.CrossRefGoogle Scholar
  15. Ineson P., Taylor K., Harrison A.F., Poskitt J., Benham D.G., Tipping E. and Woof C. 1998b. Effects of climate change on nitrogen dynamics in upland soils. 1. A transplant approach. Global Change Biol. 4: 143–152.CrossRefGoogle Scholar
  16. IPCC 1997. Greenhouse gas emissions from agricultural soils. In: Houghton J.T. et al. (eds), Greenhouse Gas Inventory Reference Manual. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC/OECD/IES. UK Meteorological Office, Bracknell, UK.Google Scholar
  17. Jacobsen O.H. 1989. Unsaturated hydraulic conductivity for some Danish soils. Tidsskrift for Planteavls Specialserie. Beretning nr. S2030. Statens Planteavlsforsøg, Lyngby, Denmark.Google Scholar
  18. Jamieson N., Barraclough D., Unkovich M. and Monaghan R. 1998. Soil N dynamics in a natural calcareous grassland under a changing climate. Biol. Fertil. Soils 27: 267–273.CrossRefGoogle Scholar
  19. Jamieson P.D., Berntsen J., Ewert F., Kimball B.A., Olesen J.E., Pinter P.J. Jr. et al. 2000. Modelling CO2 effects on wheat with varying nitrogen supplies. Agric. Ecosyst. Environ. 82: 27–37.CrossRefGoogle Scholar
  20. Jensen L.S., Mueller T., Nielsen N.E., Hansen S,. Crocker G.J., Grace P.R. et al. 1997. Simulating trends in soil organic carbon in long-term experiments using the soil-plant-atmosphere model DAISY. Geoderma 81: 5–28.CrossRefGoogle Scholar
  21. Kaiser E.A. and Ruser R. 2000. Nitrous oxide emissions from arable soils in Germany–An evaluation of six long-term field experiments. J. Plant Nutr. Soil Sci. 163: 249–260.CrossRefGoogle Scholar
  22. Kamp T., Steindl H., Hantschel R.E., Beese F. and Munch J.-C. 1998. Nitrous oxide emissions from a fallow and wheat field as affected by increased soil temperatures. Biol. Fertil. Soils 27: 307–314.CrossRefGoogle Scholar
  23. Kimball B.A., Kobayashi K. and Bindi M. 2002. Responses of agricultural crops to free-air CO2 enrichment. Adv. Agron. 77: 293–368.CrossRefGoogle Scholar
  24. Medlyn B.E., Badeck F.W., de Pury D.G.G., Barton C.V.M., Broadmeadow M., Ceulemans R. et al. 1999. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ. 22: 1475–1495.CrossRefGoogle Scholar
  25. Mosier A.R. 1998. Soils and climate change. Biol. Fertil. Soils 27: 221–229.CrossRefGoogle Scholar
  26. Olesen J.E. 1991. Agrometeorological annual report 1990. Tidsskrift for Planteavls Specialserie S2130. Statens Planteavlsforsøg, Lyngby, Denmark.Google Scholar
  27. Olesen J.E., Jensen T. and Petersen J. 2000. Sensitivity of field-scale winter wheat production in Denmark to climate variability and climate change. Clim. Res. 15: 221–238.CrossRefGoogle Scholar
  28. Penning de Vries F.W.T., Jansen D.M., ten Berge H.F.M. and Bakema A. 1989. Simulation of ecophysiological processes of growth in several annual crops. Pudoc, Wageningen, The Netherlands.Google Scholar
  29. Plantedirektoratet 2001. Vejledning og skemaer, mark og gødningsplan, gødningsregnskab, plantedække, harmoniregler, 2001/02. Plantedirektoratet, Lyngby, Denmark.Google Scholar
  30. Robinson D. and Conroy J.P. 1999. A possible plant-mediated feedback between elevated CO2, denitrification and the enhanced greenhouse effect. Soil Biol. Beochem. 31: 43–55.CrossRefGoogle Scholar
  31. SAS Institute 1988. SAS/STAT User's Guide. Release 6.03, 4th Edition. SAS Institute Inc., Cary, NC, USA.Google Scholar
  32. Simmelsgaard S.E. 1998. The effect of crop, N level, soil type and drainage on nitrate leaching from Danish soil. Soil Use Manage. 14: 30–36.CrossRefGoogle Scholar
  33. Smith P., Smith J.U., Powlson D.S., McGill W.B., Arah J.R.M., Chertov O.G. et al. 1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81: 153–225.CrossRefGoogle Scholar
  34. Soussana J.F., Casella E. and Loiseau P. 1996. Long-term effects of CO2 enrichment and temperature increase on a temperate grass sward. II. Plant nitrogen budgets and root fraction. Plant Soil 182: 101–114.CrossRefGoogle Scholar
  35. Thomsen I.K. and Christensen B.T. 1998. Cropping system and residue management effects on nitrate leaching and crop yields. Agric. Ecosyst. Environ. 68: 73–84.CrossRefGoogle Scholar
  36. Thomsen I.K. and Christensen B.T. 1999. Nitrogen conserving potential of successive ryegrass catch crops in continuous spring barley. Soil Use Manage. 15: 195–200.CrossRefGoogle Scholar
  37. Wand S.J.E., Midgley G.F., Jones M.H. and Curtis P.S. 1999. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentrations: a meta-analytic test of current theories and perceptions. Global Change Biol. 5: 723–741.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Jørgen E. Olesen
    • 1
  • Gitte H. Rubæk
    • 1
  • Tove Heidmann
    • 1
  • Søren Hansen
    • 2
  • Christen D. Børgensen
    • 1
  1. 1.Department of AgroecologyDanish Institute of Agricultural Sciences, Research Centre FoulumTjeleDenmark
  2. 2.Department of Agricultural SciencesRoyal Veterinary and Agricultural UniversityTaastrupDenmark

Personalised recommendations