Advertisement

General Relativity and Gravitation

, Volume 29, Issue 1, pp 117–140 | Cite as

Gravitational Waves in Matter

  • R. L. Ingraham
Article

Abstract

The theory of gravitational waves in matter is given. This covers the questions of constitutive relation, number of independent polarizations, index of refraction, reflection and refraction at an interface, etc. The theory parallels the familiar optics of electromagnetic waves in material media, but there are some striking differences. The use of the Campbell-Morgan formalism in which the gauge-invariant tidal force dyads E and B rather than the gauge-dependent metric perturbations are the unknowns is essential. The main justification of the theory at the moment is as a theoretical exercise worth doing. The assumption: size L of the medium ≫ gravitational wave length λ (“infinite medium”) rules out application to the already well-understood detection problem, but there may be an application to gravitational wave propagation through molecular gas clouds of galactic or inter-galactic size.

GRAVITATIONAL WAVE “OPTICS” REFRACTION AND REFLECTION 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Weinberg, S. (1972). Gravitation and Cosmology (Wiley, New York).Google Scholar
  2. 2.
    Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation (W. H. Freeman, San Francisco).Google Scholar
  3. 3.
    Ohanion, H. C., and Ruffini, R. (1994). Gravitation and Spacetime (Norton, New York).Google Scholar
  4. 4.
    Adler, R., Bazin, M., and Schiffer, M. (1975). Introduction to General Relativity (McGraw-Hill, New York).Google Scholar
  5. 5.
    Jackson, J. D. (1975). Classical Electrodynamics (Wiley, New York).Google Scholar
  6. 6.
    Campbell, W. B., and Morgan, T. (1971). Physica 53, 264.Google Scholar
  7. 7.
    Campbell, W. B., and Morgan, T. (1976). Amer. J. Phys. 44, 356.Google Scholar
  8. 8.
    Campbell, W. B., and Morgan, T. (1976). Amer. J. Phys. 44, 1110.Google Scholar
  9. 9.
    Russakoff, G. (1970). Amer. J. Phys. 38, 1188.Google Scholar
  10. 10.
    Goldstein, H. (1980). Classical Mechanics (Addison-Wesley, Reading, Mass.).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • R. L. Ingraham

There are no affiliations available

Personalised recommendations