Journal of Materials Science

, Volume 32, Issue 15, pp 4025–4030 | Cite as

Dry and wet oxidation of an Si2N2O-ZrO composite material

  • M Heim
  • J Chen
  • R Pompe


The oxidation behaviour of a low-cost porous Si2N2O-ZrO2 composite material, produced without the use of a sintering aid, was investigated in dry and humid air and argon, respectively, in the temperature range 800–1470°C. The extent of internal oxidation in dry air was found to be dependent on the oxidation temperature. The material exhibits excellent oxidation resistance at temperatures ≥1300°C. A very thin layer containing zirconium silicate which is formed on the internal pore walls, appears to protect the material against further oxidation. External pore sealing was not observed. Water vapour was found to enhance oxidation significantly. It was also found that a short-term oxidation treatment at high temperature protects the material from further oxidation at lower temperatures. External pore closure did not occur.


Open Porosity Internal Oxidation Internal Pore High Weight Gain Total Weight Gain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. HEIM, J. CHEN, R. POMPE and H. ARWIN, in “Proceedings of the 5th International Symposium on Ceramic Materials and Components for Engines”, edited by D. S. Yan, X. R. Fu and S. X. Shi (World Scientific, Singapore, 1995) pp. 473–76.Google Scholar
  2. 2.
    C. O'MEARA, M. HEIM and R. POMPE, J. Eur. Ceram. Soc. 15 (1995) 319.Google Scholar
  3. 3.
    M. HEIM, H. ARWIN, J. CHEN and R. POMPE, ibid. 15 (1995) 313.CrossRefGoogle Scholar
  4. 4.
    M. HEIM, C. O'MEARA, J. CHEN and R. POMPE, Ceram. Engng. Sci. Proc. 17(4 and 5) (1996) in press.Google Scholar
  5. 5.
    M. HEIM, C. O'MEARA, J. CHEN, R. GATT and R. POMPE, J. Electrochem. Soc. in press.Google Scholar
  6. 6.
    E. A. IRENE and R. GHEZ, J. Electrochem. Soc. 124 (1977) 1757.CrossRefGoogle Scholar
  7. 7.
    B. E. DEAL and A. S. GROVE, J. Appl. Phys. 36 (1965) 3770.CrossRefGoogle Scholar
  8. 8.
    P. J. JORGENSEN, M. E. WADSWORTH and I. B. CUTLER, J. Amer. Ceram. Soc. 44 (1961) 258.CrossRefGoogle Scholar
  9. 9.
    J. SCHLICHTING, Ber. Dt. Keram. Ges. 56 (1979) 196.Google Scholar
  10. 10.
    Idem, ibid. 56 (1979) 256.Google Scholar
  11. 11.
    M. MAEDA, K. NAKAMURA and T. OHKUBO, J. Mater. Sci. 23 (1988) 3933.CrossRefGoogle Scholar
  12. 12.
    E. J. OPILA, J. Amer. Ceram. Soc. 77 (1994) 730.CrossRefGoogle Scholar
  13. 13.
    E. J. OPILA and R. E. HANN Jr, J. Amer. Ceram. Soc., submitted.Google Scholar
  14. 14.
    S. C. SINGHAL, ibid. 59 (1976) 81.Google Scholar
  15. 15.
    M. MAEDA, K. NAKAMURA and T. OHKUBO, J. Mater. Sci. Lett. 24 (1989) 2120.CrossRefGoogle Scholar
  16. 16.
    P. AINGER, J. Mater. Sci. 1 (1966) 1.CrossRefGoogle Scholar
  17. 17.
    R. POMPE, US Pat. 438 416, SE Pat. no. 8702268-7 (1987).Google Scholar
  18. 18.
    Idem, Patent EPC Co4B 35/48, 35/58 (1988).Google Scholar
  19. 19.
    J. CHEN, M. HEIM and R. POMPE, in “Proceedings of the 4th International Symposium on High Temperature Corrosion and Protection of Materials”, May 1996, Les Embiez, France, in press.Google Scholar
  20. 20.
    F. PORZ and F. THÜMMLER. J. Mater. Sci. 19 (1994) 1283.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • M Heim
    • 1
  • J Chen
    • 1
  • R Pompe
    • 2
  1. 1.Department of Inorganic ChemistryChalmers University of Technology and University of GoteborgGoteborgSweden
  2. 2.Swedish Ceramic InstituteGoteborgSweden

Personalised recommendations