Journal of Materials Science

, Volume 32, Issue 21, pp 5621–5627 | Cite as

The morphology of isotactic polystyrene crystals grown in thin films: the effect of substrate material



Thin isotactic polystyrene films (∼50 nm thick) have been crystallized from the melt on various substrate materials (carbon, glass, mica, polyimide sheet and silicon). The morphology of the crystals has been examined using atomic force microscopy, and was found to be dependent on the nature of the substrate, with two basic types of crystal forming. Crystals either develop around giant screw dislocations, or around small bundles of lamellae growing perpendicular to the substrate surface. It has further been observed that the number of screw dislocations generated in the lamellae is also dependent on the substrate, as is the growth rate of the spiral terraces. These effects are interpreted in terms of interactions between the molecules in the melt and the substrate surface.


Atomic Force Microscopy Polyimide Substrate Material Screw Dislocation Isotactic Polypropylene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.-J. GUNTHERODT and R. WIESENDANGER (eds), “Scanning Tunneling Microscopy”, Vols I and II (Springer, Berlin,1992).Google Scholar
  2. 2.
    G. BINNIG, C. F. QUATE and C. GERBER, Phys. Rev. Lett. 56 (1986) 930.CrossRefGoogle Scholar
  3. 3.
    D. V. REES and D. C. BASSETT, J. Polym. Sci. A-2 9 (1971) 385.CrossRefGoogle Scholar
  4. 4.
    D. C. BASSETT and A. M. HODGE, Proc. R. Soc. Lond. 359 (1979) 121.CrossRefGoogle Scholar
  5. 5.
    B. K. ANNIS, J. R. REFFINER and B. WUNDERLICH, J. Polym. Sci. Polym. Phys. 31 (1993) 93.CrossRefGoogle Scholar
  6. 6.
    H. SCHONHERR, D. SNETIVY and G. J. VANSCO, Polym. Bull. 30 (1993) 567.CrossRefGoogle Scholar
  7. 7.
    K. IZUMI, G. PING, A. TODA, H. MIYAJI, M. HASHIMOTO, Y. MIYAMOTO and Y. NAKAGAWA, Jpn J. Appl. Phys. 33 (1994) L1628.CrossRefGoogle Scholar
  8. 8.
    A. S. VAUGHAN, J. Mater. Sci. 28 (1993) 1805.CrossRefGoogle Scholar
  9. 9.
    A. J. LOVINGER and H. D. KEITH, Macromol. 12 (1979) 919.CrossRefGoogle Scholar
  10. 10.
    K. IZUMI, G. PING, M. HASHIMOTO, A. TODA, H. MIYAJI, Y. MIYAMOTO and Y. NAKAGAWA, J. Jpn Assoc. Cryst. Growth 21 (1994) S265.Google Scholar
  11. 11.
    K. IZUMI, G. PING, A. TODA, H. MIYAJI and Y. MIYAMOTO, Jnp J. Appl. Phys. 31 (1992) L626.CrossRefGoogle Scholar
  12. 12.
    H. D. KEITH, R. G. VADIMSKY and F. J. PADDEN, J. Polym. Sci. A-2 8 (1970) 1687.CrossRefGoogle Scholar
  13. 13.
    A. S. VAUGHAN, Thesis, University of Reading (1984).Google Scholar
  14. 14.
    M. MOTOMATSU, H.-Y. NIE, W. MIZUTANI and H. TOKUMOTO, Polymer 37 (1996) 183.CrossRefGoogle Scholar
  15. 15.
    T. J. LENK, V. M. HALLMARK, J. F. RABOLT, L. HÄUSSLING and H. RINGSDORF, Macromol. 26 (1993) 1230.CrossRefGoogle Scholar
  16. 16.
    J. R. DORGAN, M. STAMM, C. TOPRAKCIOGLU, R. JÉRÔME and L. J. FETTERS, ibid. 26 (1993) 5321.CrossRefGoogle Scholar
  17. 17.
    S. REICH and Y. COHEN, J. Polym. Sci. Polym. Phys. Ed. 19 (1981) 1255.CrossRefGoogle Scholar
  18. 18.
    Y. LIU, W. ZHAO, X. ZHENG, A. KING, A. SINGH, M. H. RAFAILOVICH, J. SOKOLOV, K. H. DAI, E. J. KRAMER, S. A. SCHWARZ, O. GEBIZLIOGLU and S. K. SINHA, Macromol. 27 (1994) 4000.CrossRefGoogle Scholar
  19. 19.
    K. TANAKA, J.-S. YOON, A. TAKAHARA and T. KIJIYAMA, ibid. 28 (1995) 934.CrossRefGoogle Scholar
  20. 20.
    J. L. KEDDIE, R. A. L. JONES and R. A. CORY, Farad. Discuss. 98 (1994) 219.CrossRefGoogle Scholar
  21. 21.
    J. L. KEDDIE and R. A. L. JONES, Israel J. Chem. 35 (1995) 21.CrossRefGoogle Scholar
  22. 22.
    K. SHUTO, Y. ONISHI, T. KAJIYAMA and C. C. HAN, Polym. J. 25 (1993) 291.CrossRefGoogle Scholar
  23. 23.
    D. C. BASSETT and A. S. VAUGHAN, Polymer 26 (1985) 717.CrossRefGoogle Scholar
  24. 24.
    A. S. VAUGHAN and D. C. BASSETT, ibid. 28 (1988) 1397.CrossRefGoogle Scholar
  25. 25.
    M. L. MANSFIELD, ibid. 29 (1988) 1755.CrossRefGoogle Scholar
  26. 26.
    S. J. SUTTON, K. IZUMI, H. MIYAJI, K. FUKAO and Y. MIYAMOTO, ibid. 37 (1996) 5529.CrossRefGoogle Scholar
  27. 27.
    F. KHOURY and E. PASSAGLIA, in “Treatise on Solid State Chemistry”, Vol. 3, “Crystalline and Noncrystalline Solids”, edited by N. B. Hannay (Plenum Press, New York, 1976).Google Scholar
  28. 28.
    U. W. GEDDE, “Polymer Physics” (Chapman and Hall, London, 1995) p. 21.Google Scholar
  29. 29.
    P. G. DE GENNES, “Scaling Concepts in Polymer Science” (Cornell University Press, Ithaca, NY, 1979) p. 35.Google Scholar
  30. 30.
    M. STAMM and J. R. DORGAN, Coll. Sur. A Physiochem. Engng Aspects 86 (1994) 143.CrossRefGoogle Scholar
  31. 31.
    D. A. GUZONAS, D. BOILS, C. P. TRIPP and M. L. HAIR, Macromol. 25 (1992) 2434.CrossRefGoogle Scholar
  32. 32.
    S. SAWAMURA, S. J. SUTTON, K. IZUMI, H. MIYAJI and Y. MIYAMOTO, to be published.Google Scholar
  33. 33.
    G. J. VANCSO, private communication (1995).Google Scholar
  34. 34.
    D. C. BASSETT, F. R. DAMMONT and R. SALOVEY, Polymer 5 (1964) 579.CrossRefGoogle Scholar
  35. 35.
    D. C. BASSETT, “Principles of Polymer Morphology” (Cambridge University Press, Cambridge, 1981) p. 52.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

    • 1
    • 2
    • 2
    • 3
    • 4
  1. 1.The National Grid Company, Engineering and TechnologyLeatherheadUK
  2. 2.Department of PhysicsFaculty of ScienceKyotoJapan
  3. 3.Department of Fundamental Sciences,Faculty of Integrated Human StudiesKyoto UniversityKyotoJapan
  4. 4.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations