Journal of Materials Science

, Volume 32, Issue 15, pp 3933–3938 | Cite as

Synthesis of ultrafine titanium diboride particles by rapid carbothermal reduction in a particulate transport reactor

  • Takeyasu Saito
  • Tomoyuki Fukuda
  • Hideaki Maeda
  • Katsuki Kusakabe
  • Shigeharu Morooka


Ultrafine TiB2 powders were synthesized by rapid carbothermal reduction in a vertical tubular reactor through which the particles fell freely. The starting materials were TiO2, H3BO3 and cornstarch, which were mixed and calcined at 400°C for 1 h. The calcined precursor was milled, sieved and then fed into the top of the reactor. The reduction was carried out between 1786–1791°C in a downward flow of argon. Product particles were recovered at the bottom of the reactor. When the precursor molar composition ratio was TiO2 : B2O3 : C=1 : 2 : 5.5, the carbon content in the product was 5 wt% and the crystallite size was 80 nm. The carbon content in the product was reduced to 2.9 wt% by a heat treatment in an H2 atmosphere for 9 h.


Carbon Content Cornstarch Product Particle Boron Carbide Carbothermal Reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. MATKOVICH (ed.), “Boron and refractory borides”, (Springer-Verlag, Berlin, 1977).Google Scholar
  2. 2.
    H. DOI, Boundary 2 (1986) 33.Google Scholar
  3. 3.
    K. NISHIYAMA, J. Jpn. Soc. Powder Metall. 37 (1990) 906 (in Japanese).CrossRefGoogle Scholar
  4. 4.
    J. MATSUSHITA, S. HAYASHI and H. SAITO, J. Ceram. Soc. Jpn. 97 (1989) 1206.CrossRefGoogle Scholar
  5. 5.
    J. MATSUSHITA, H. NAGASHIMA and H. SAITO, ibid. 99 (1991) 78.CrossRefGoogle Scholar
  6. 6.
    J. MATSUSHITA and A. SANO, ibid. 100 (1992) 593.CrossRefGoogle Scholar
  7. 7.
    S. TORIZUKA, J. HARADA, H. YAMAMOTO, H. NISHIO, A. CHINO and Y. ISHIBASHI, ibid. 100 (1992) 259.CrossRefGoogle Scholar
  8. 8.
    Idem, ibid. 100 (1992) 691.Google Scholar
  9. 9.
    H. R. BAUMGARTNER and R. A. STEIGER, J. Amer. Ceram. Soc. 67 (1984) 207.CrossRefGoogle Scholar
  10. 10.
    A. W. WEIMER, R. P. ROACH, C. N. HANEY, W. G. MOORE and W. RAFANIELLO, AIChE J. 37 (1991) 759.CrossRefGoogle Scholar
  11. 11.
    A. W. WEIMER, W. G. MOORE, R. P. ROACH, J. E. HITT, R. S. DIXIT and S. E. PRATSINIS, J. Amer. Ceram. Soc. 75 (1992) 2509.CrossRefGoogle Scholar
  12. 12.
    Y. XIONG, S. E. PRATSINIS and A. W. WEIMER, AIChE J. 38 (1992) 1685.CrossRefGoogle Scholar
  13. 13.
    D. R. STANLEY, J. D. BIRCHALL, J. N. K. HYLAND, L. THOMAS and K. HODGETTS, J. Mater. Chem. 2 (1992) 149.CrossRefGoogle Scholar
  14. 14.
    H. MAEDA, T. YOSHIKAWA, K. KUSAKABE and S. MOROOKA, J. Alloys. Comp. 215 (1994) 127.CrossRefGoogle Scholar
  15. 15.
    A. W. WEIMER, K. J. NILSEN, G. A. COCHRAN and R. P. ROACH, AIChE J. 39 (1993) 493.CrossRefGoogle Scholar
  16. 16.
    Y. BAIK, K. SHANKER, J. R. McDERMID and R. A. L. DREW, J. Amer. Ceram. Soc. 77 (1994) 2165.CrossRefGoogle Scholar
  17. 17.
    M. EKELUND and B. FORSLUND, ibid. 75 (1992) 532.CrossRefGoogle Scholar
  18. 18.
    T.-H. LIOU and F.-W. CHANG, Ind. Engng Chem. Res. 34 (1995) 118.CrossRefGoogle Scholar
  19. 19.
    G. V. WHITE, K. J. D. MACKENZIE and J. H. JOHNSTON, J. Mater. Sci. 27 (1992) 4287.CrossRefGoogle Scholar
  20. 20.
    G. V. WHITE, K. J. D. MACKENZIE, I. W. M. BROWN, M. E. BOWDEN and J. H. JOHNSTON, ibid. 27 (1992) 4294.CrossRefGoogle Scholar
  21. 21.
    G. V. WHITE, K. J. D. MACKENZIE, I. W. M. BROWN and J. H. JOHNSTON, ibid. 27 (1992) 4300.CrossRefGoogle Scholar
  22. 22.
    “JANAF thermochemical tables”, 3rd Edn (American Chemical Society, American Institute for Physics, and National Bureau of Standards, 1986).Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • Takeyasu Saito
    • 1
  • Tomoyuki Fukuda
    • 1
  • Hideaki Maeda
    • 1
  • Katsuki Kusakabe
    • 1
  • Shigeharu Morooka
    • 1
  1. 1.Department of Chemical Science and TechnologyKyushu UniversityHigashi-ku FukuokaJapan

Personalised recommendations