Journal of Materials Science

, Volume 32, Issue 24, pp 6633–6638 | Cite as

Ultrasonic through-transmission method of evaluating the modulus of elasticity of Al2O3–ZrO2 composite

  • Tan. Kha. Shen
  • P. Hing


The elastic properties of Al2O3–ZrO2 composite were determined from ultrasonic velocity measurements, and were found to be dependent upon the amount of ZrO2 phase, the compacting pressure of the green ceramic and sintering time. The velocity in the Al2O3–ZrO2 composite increased to a maximum for about 3 wt% unstabilized ZrO2 dispersed in Al2O3. The velocity decreased monotonically thereafter. The increase in moduli, as shown by an increase in velocity, has been attributed to phase transformation of the unstabilized ZrO2 from tetragonal to a monoclinic phase, which presumably leads to a toughening and strengthening effect, and also due to the action of ZrO2 in stopping grain growth of Al2O3 during densification. The excessive shear strain, induced by the tetragonal→monoclinic transformation phase, with greater than 50 wt% ZrO2 content, caused microcracks to appear in the composite. This reduced the elastic moduli of the composite. It was found that the composition dependence of the elastic moduli lie outside the theoretical bound of Voigt and Reuss for the elastic moduli of two-phase materials, and that by increasing the compacting pressure, an improvement in the elastic moduli of the sintered composite occurred irrespective of ZrO2 content. The thermal expansion of the composites showed no appreciable change with addition of zirconia up to 5 wt% ZrO2. However, dimensional changes due to phase transformation particularly with high zirconia content have been established.


Zirconia Elastic Modulus Elastic Modulo Shear Velocity Monoclinic Phase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. CLAUSSEN, J. Amer. Ceram. Soc. 59 (1976).Google Scholar
  2. 2.
    Idem, ibid. 61 (1978) 85.Google Scholar
  3. 3.
    S. HORI and R. KURITA, Adv. Ceram. Sci. Technol. Zirconia III 24A (1988) 423.Google Scholar
  4. 4.
    T. S. YEN and J. K. GUO, ibid. 24B (1988) 573.Google Scholar
  5. 5.
    F. F. LANGE and M.M. HIRLINGER, J. Amer. Ceram. Soc. 67 (1984) 164.CrossRefGoogle Scholar
  6. 6.
    S. HORI, R. KURITA, M. YOSHIMURA and S. SOMIYA, J. Mater. Sci. Lett. 4 (1985) 1067.CrossRefGoogle Scholar
  7. 7.
    P. Y. DALVI and D. D. UPADHYAYA, Trans. Ind. Ceram. Soc. 49(2) (1990) 21.CrossRefGoogle Scholar
  8. 8.
    J. WANG and R. STEVENS, J. Mater. Sci. 24 (1989) 3421.CrossRefGoogle Scholar
  9. 9.
    A. G. EVANS and A. H. HEUER, J. Amer. Ceram. Soc. 63(5) (1980) 241.CrossRefGoogle Scholar
  10. 10.
    F. VODAK, Acta Mechan. 39 (1981) 37.CrossRefGoogle Scholar
  11. 11.
    K. S. TAN, R. ROUND and B. BRIDGE, Br. Ceram. Trans. J. 88(4) (1989) 138.Google Scholar
  12. 12.
    R. HALMSHAW, “Non-destructive testing” (Edward Arnold, 1987) pp. 112–13.Google Scholar
  13. 13.
    J. BLITZ, “Elements of acoustics” (Butterworths, 1976).Google Scholar
  14. 14.
    P. W. BRIDGEMAN, “Studies in large plastic flow” (McGraw-Hill, New York, 1952).Google Scholar
  15. 15.
    E. RYSHKEWITCH and D. W. RICHERSON, “Oxide Ceramics” (General Ceramics, New York, 1985) pp. 143–53.Google Scholar
  16. 16.
    W. D. KINGERY, H. K. BOWEN and R. H. UHLMANN, “Introduction to ceramics”, 2nd Edn (Wiley, 1975) pp. 773–7.Google Scholar
  17. 17.
    Z. HASHIN and S. SHTRIKMAN, J. Mech. Phys. Solids 11 (1963) 127.CrossRefGoogle Scholar
  18. 18.
    B. L. MITRA, N. C. BISWAS and P. S. AGGARWAL, Bull. Mater. Sci. 15(2) (1992) 131.CrossRefGoogle Scholar
  19. 19.
    G. DE PORTU and P. VINCENZINI, Short Commun. 5 (1979) 165.Google Scholar
  20. 20.
    Idem, Ceram. Int. 6 (1980) 129.CrossRefGoogle Scholar
  21. 21.
    G. DE PORTU, C. FIORI and O. SBAIRERO, Adv. Ceram. 24B (1988) 1063.Google Scholar
  22. 22.
    D. J. ROTH, D. B. STANG, S. M. SWICKARD, M. R. DEGUIRE and L. E. DOLHERT, Mater. Eval. July (1991) 883.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • Tan. Kha. Shen
    • 1
  • P. Hing
  1. 1.School of Applied ScienceNanyang Technological UniversitySingapore

Personalised recommendations