Advertisement

Journal of Materials Science

, Volume 32, Issue 15, pp 4031–4037 | Cite as

Fracture behaviour of liquid crystal epoxy resin systems based on the diglycidyl ether of 4,4′-dihydroxy-α-methylstilbene and sulphanilamide: Part I Effects of curing variations

  • H. J Sue
  • J. D Earls
  • R. E HEFNERJr
Article

Abstract

The fracture behaviours of the pour-cast, unoriented diglycidyl ether of 4,4′-dihydroxy-α-methylstilbene/sulphanilamide liquid crystalline epoxies (LCE) cured at various temperature steps are investigated. It is found that, depending on how the LCE is cured, the liquid crystalline (LC) domain size varies dramatically. These, in turn, affect how the LCEs fracture. The operative toughening mechanisms in the toughest LCE are studied in detail and found to include the formation of numerous segmented, unlinked microcracks in front of the main crack. When the crack opens up, the matrix material between the segmented microcracks acts as a bridge between the opening crack planes. Furthermore, crack bifurcation appears to take place when the segmented cracks are eventually linked with the main crack. This entire fracture process accounts for the high fracture toughness (GIC=580 J m-2) of this particular LCE with respect to conventional epoxies (GIC=180 J m-2). The relationship between the LCE morphology and the corresponding fracture mechanisms is discussed.

Keywords

Fracture Toughness Damage Zone Main Crack Liquid Crystalline Transmission Electron Microscopy Investigation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. EARLS and R. E. HEFNER, JR and P. M. PUCKETT, US Patent 5,463,091, 1995.Google Scholar
  2. 2.
    R. A. WEISS and C. K. OBER, ACS Symp. Ser. 435 (ACS, Washington, DC, 1990).Google Scholar
  3. 3.
    A. A. COLLYER, “Liquid crystal polymers: from structures to applications” (Elsevier Applied Science Publishers, New York, 1992).Google Scholar
  4. 4.
    G. C. BARCLAY, C. K. OBER, K. I. PAPATHOMAS and D. W. WANG, J. Polym. Sci. Part A: Polym. Chem. 30 (1992) 1831.CrossRefGoogle Scholar
  5. 5.
    A. A. ROBINSON, S. G. McNAMEE, Y. S. FREIDZON and C. K. OBER, Polymer Preprint 34 (1993) 743.Google Scholar
  6. 6.
    J. D. EARLS and R. E. HEFNER, JR. and P. M. PUCKETT, US Patent 5,218,062, 1993.Google Scholar
  7. 7.
    M. E. SMITH, B. C. BENICEWICZ, E. P. DOUGLAS, J. D. EARLS and R. D. PRIESTER, Polymer Preprint 37 (1996) 50.Google Scholar
  8. 8.
    Q. LIN, Ph.D. Thesis, The University of Michigan, Ann Arbor, 1994.Google Scholar
  9. 9.
    H. J. SUE, R. A. PEARSON, D. S. PARKER, J. HUANG and A. F. YEE, Polymer Preprint 29 (1988) 147.Google Scholar
  10. 10.
    H. J. SUE and A. F. YEE, J. Mater. Sci. 28 (1993) 2915.CrossRefGoogle Scholar
  11. 11.
    H. J. SUE, Polym. Eng. Sci. 31 (1991) 270CrossRefGoogle Scholar
  12. 12.
    O. L. TOWERS, “Stress intensity factor, compliance, and elastic η factors for six geometries” (The Welding Institute, Cambridge, UK, 1981).Google Scholar
  13. 13.
    ASTM standard, E399-81.Google Scholar
  14. 14.
    A. S. HOLIK, R. P. KAMBOUR, S. Y. HOBBS and D. G. FINK, Microstruct. Sci. 7 (1979) 357.Google Scholar
  15. 15.
    H. HRISTOV and A. F. YEE, private communication.Google Scholar
  16. 16.
    Q. LIN, A. F. YEE, J. D. EARLS, R. E. HEFNER, JR. and H.-J. SUE, Polym. Comm. 35 (1994) 2679.CrossRefGoogle Scholar
  17. 17.
    R. A. BUBECK, private communication.Google Scholar
  18. 18.
    Q. LIN, A. F. YEE, H. J. SUE, J. D. EARLS and R. E. HEFNER JR., J. Polym. Sci. Polym. Phys. Ed., Dec. 1996 (in press).Google Scholar
  19. 19.
    E. HORNBOGEN and K. FRIDRICH, J. Mater. Sci. 15 (1980) 2175.CrossRefGoogle Scholar
  20. 20.
    M. D. HEANEY, H. J. SUE, J. D. EARLS and R. E. HEFNER, JR., in preparation.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • H. J Sue
    • 1
  • J. D Earls
    • 2
  • R. E HEFNERJr
    • 2
  1. 1.Polymer Technology Center, Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Organic Product ResearchThe Dow Chemical CompanyFreeportUSA

Personalised recommendations