Advertisement

Journal of Materials Science

, Volume 32, Issue 24, pp 6447–6451 | Cite as

The quinacridones: structure and colour: a study by powder diffraction

  • G. Lincke
Article

Abstract

The known structure of 21 industrial gamma-quinacridone pigments served as a basis for the measurement of powder patterns with and without fluorophlogopite by a Bragg–Brentano diffractometer. Calibration and cell refinement were used to determine the cell parameters and to fit the profiles of the intensities. The unit cells vary systematically and the importance of the short b-axis is revealed. Averaging of all data leads to idealized unit cells. The corresponding criss-cross angles, τc, of the 21 pigments vary in a systematic way. It is possible to determine the relative frequency of the positions of the molecules inside the unit cell. The criss-cross angle of gamma-quinacridone increases from 2×26.0° (hydrogen-bond: 0.266–0.268 nm) to 2×28.0° (hydrogen-bond: 0.268–0.274 nm). The pigments are understood and described as physical mixtures of crystallographically similar structures. The colour of these pigments is one of the most important industrial properties. It varies from reddish purple to yellowish purple apparently depending on the structure. The difference between the gamma- and gamma′-form is described. Alpha-quinacridone is a special form of gamma-quinacridone and fits perfectly in the system of the latter. Evaluating the criss-cross angle of all known quinacridones, it is possible to classify their structure and colour, which are attributed to the cooperative effect of hydrogen-bonds and double bonds in the lattice (π–σ-correlation).

Keywords

Powder Pattern DMFA Product Range Organic Pigment Raction Pattern 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. LINCKE, and H.-U. FINZEL, Cryst. Res. Technol. 31 (1996) 441.CrossRefGoogle Scholar
  2. 2.
    Idem., ibid. 31 (1996) 658.Google Scholar
  3. 3.
    W. DEUSCHEL, F. GUNDEL, H. WUEST and E. DAUBACH, US 3 074 950 (1963).Google Scholar
  4. 4.
    A. WHITAKER, JCDS, 93 (1977) 15.CrossRefGoogle Scholar
  5. 5.
    E. E. JAFFE, Surf. Coat. Internat. 75 (1992) 24 and private communication.Google Scholar
  6. 6.
    E. PAULUS, E. DIETZ, F. KROH, F. PROKSCHY and G. LINCKE, in “XII European Crystallographic Meeting Collected Papers”, edited by WINITI, Vol. 2. (WINITI, Moscow, 1989) pp. 23–24 and poster lecture.Google Scholar
  7. 7.
    G. D. POTTS, W. JONES, J. F. BULLOCK, J. ANDREWS and S. J. MAGINN, Chem. Soc. Chem. Commun. (1994) 2565.Google Scholar
  8. 8.
    D. S. FILHO and C. M. F. OLIVEIRA, J. Mater. Sci. 27 (1992) 5101.CrossRefGoogle Scholar
  9. 9.
    H. KOJAMA, H. J. SCHEEL and F. LAVES, Naturwiss 53 (1966) 700.Google Scholar
  10. 10.
    DIN 5033 (14), März 1979, 5th Edition (Beuth-Verlag GmbH, Berlin-Köln, 1988).Google Scholar
  11. 11.
    D. B. JUDD and G. WYSZECKI, “Color in Business, Science and Industry”. (Wiley, New York, 1975).Google Scholar
  12. 12.
    E. HILLENKAMP, Diplomarbeit FH Niederrhein, FB Krefeld, SS (1994).Google Scholar
  13. 13.
    H. G. VÖLZ, “Industrial Color Testing”, (VCH, Weinheim, 1995), pp. 211, 222, 228, 229, 232.Google Scholar
  14. 14.
    P. HARTMAN and W. PERDOK, Acta Crystallogr. 8 (1955) 49.CrossRefGoogle Scholar
  15. 15.
    Idem, ibid 8 (1955) 521.Google Scholar
  16. 16.
    G. R. DESIRAJU, “Crystal Engineering, (Elsevier, Amsterdam, Oxford, New York, Tokyo, 1989) pp. 160–2.Google Scholar
  17. 17.
    T. C. PATTON (ed.), CIE notation, “Pigment Handbook”, Part III (Wiley, New York, 1973) p. 242.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • G. Lincke
    • 1
  1. 1.Fachbereich ChemieFH NiederrheinKrefeldGermany

Personalised recommendations