Advertisement

Journal of Materials Science

, Volume 32, Issue 21, pp 5615–5620 | Cite as

Cold crystallization studies on PET/PEN blends as revealed by microhardness

  • M. T CONNOR
  • M. C. GARCIA GUTIERREZ
  • D. R RUEDA
  • F. J. BALTA CALLEJA
Article

Abstract

The cold crystallization of amorphous films of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalene-2,6-dicarboxylate) (PEN) blends, with different composition, prepared by co-precipitation from solution followed by melt-pressing for 2 min at 280°C and quenching in ice-water, was followed by measuring the microhardness, H, in real time as a function of crystallization temperature and time. An analytical model was derived, relating properties of the individual components to the blend microhardness based on an Avrami-type equation to account for the crystallization of the components upon heating. Fitting of the model to the experimental results revealed a two-step hardening process of the blends. The degree of transesterification of the blends, can be estimated with this model. Finally, a removal of the physical ageing, inducing a decrease in H of PET in the blend, was observed upon heating above its glass transition temperature.

Keywords

Crystallization Temperature Crystallization Time Ethylene Terephthalate Cold Crystallization Avrami Exponent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. SANTA CRUZ, F. J. BALTÁ CALLEJA, H. G. ZACHMANN, N. STRIBECK and T. ASANO, J. Polym. Sci. B 29 (1991) 819.CrossRefGoogle Scholar
  2. 2.
    F. J. BALTÁ CALLEJA, J. BARANOWSKA, D. R. RUEDA and R. K. BAYER, J. Mater. Sci. 28 (1993) 6074.CrossRefGoogle Scholar
  3. 3.
    F. J. BALTÁ CALLEJA, C. SANTA CRUZ and T. ASANO, J. Polym. Sci. B. 31 (1993) 557.CrossRefGoogle Scholar
  4. 4.
    D. R. RUEDA, A. VIKSNE, L. MALERS, F. J. BALTÁ CALLEJA and H. G. ZACHMANN, Macromol. Chem. Phys. 195 (1994) 3869.CrossRefGoogle Scholar
  5. 5.
    U. EISELE, “Introduction to Polymer Physics” (Springer, Berlin, 1990) p. 79.Google Scholar
  6. 6.
    B. WUNDERLICH, “Macromolecular Physics”, Vol. 2 (Academic Press, London, 1976) p. 115.CrossRefGoogle Scholar
  7. 7.
    J. M. SCHULTZ, “Polymer Materials Science” (Prentice Hall, New York, 1974) p. 380.Google Scholar
  8. 8.
    F. J. BALTÁ CALLEJA, Trends Polym. Sci. 2 (1994) 419.Google Scholar
  9. 9.
    A. ANDRESEN and H. G. ZACHMANN, Coll. Polym. Sci. 272 (1994).Google Scholar
  10. 10.
    C. SANTA CRUZ, F. J. BALTÁ CALLEJA, H. G. ZACHMANN and D. CHEN, J. Mater. Sci. 27 (1992) 2161.CrossRefGoogle Scholar
  11. 11.
    F. J. BALTÁ CALLEJA, L. GIRI and H. G. ZACHMANN, ibid. 32 (1997) 1117.CrossRefGoogle Scholar
  12. 12.
    B. GÜNTER and H. G. ZACHMANN, Polymer 24 (1983) 1008.CrossRefGoogle Scholar
  13. 13.
    S. BUCHNER, D. WISWE and H. G. ZACHMANN, Polymer 30 (1989) 480.CrossRefGoogle Scholar
  14. 14.
    D. R. RUEDA, A. VARKALIS, A. VIKSNE, F. J. BALTÁ CALLEJA and H. G. ZACHMANN, J. Polymer. Sci. Polym. Phys. B 33 (1995) 1653.CrossRefGoogle Scholar
  15. 15.
    F. J. BALTÁ CALLEJA, D. R. RUEDA, G. H. MICHLER, I. NAUMANN, H. G. ZACHMANN, J. Macromol. Sci. Phys., in Press.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • M. T CONNOR
    • 1
  • M. C. GARCIA GUTIERREZ
    • 1
  • D. R RUEDA
    • 1
  • F. J. BALTA CALLEJA
    • 1
  1. 1.Instituto de Estructura de la Materia, C.S.I.C.MadridSpain

Personalised recommendations