Advertisement

Journal of Materials Science

, Volume 32, Issue 24, pp 6429–6433 | Cite as

Microwave densification of electrophoretically infiltrated silicon carbide composite

  • H. H. Streckert
  • K. P. Norton
  • J. D. Katz
  • J. O. Freim
Article

Abstract

A new method to fabricate SiC composites by microwave heating SiC preforms is described. Preforms were produced by electrophoretically infiltrating SiC fibre (Nicalon) preforms with SiC powder. Samples were heated to 1600°C in a matter of minutes and held at temperature for 5 min to minimize fibre degradation. To achieve densification, heated preforms required the application of a uniform load. Bulk densities increased from ∼ 0.8 gcm-3 for the as-infiltrated preforms to over 1.9 gcm-3 for microwave-heated samples with a small applied load of ∼13 kPa. Microstructural analysis revealed the presence of some pores and cracks in the matrix; however, large areas of dense SiC matrix material are apparent.

Keywords

Silicon Carbide Microwave Heating Microwave Processing Silver Foil Silicon Carbide Powder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. FITZER and R. GADOW, Am. Ceram. Soc. Bull. 65 (1986) 326.Google Scholar
  2. 2.
    C. VIX-GUTERL, J. LAHAYE and P. EHRBURGER, Carbon 31 (1993) 629.CrossRefGoogle Scholar
  3. 3.
    G. C. WEI and P. F. BECHER, Am. Ceram. Soc. Bull. 64 (1985) 298.Google Scholar
  4. 4.
    P. J. LAMICQ, G. A. BERNMHART, M. M. DAUCHIER and J. MACE, Am. Ceram. Soc. Bull. 65 (1986) 336.Google Scholar
  5. 5.
    G. SIMON and A. R. BUNSELL, J. Mater. Sci. 19 (1984) 3658.CrossRefGoogle Scholar
  6. 6.
    D. P. STINTON, R. A. LOWDEN and T. M. BESMANN, Mater. Res. Soc. Symp. Proc. 250 (1992) 233.CrossRefGoogle Scholar
  7. 7.
    T. D. GULDEN, J. L. KAAE, K. P. NORTON and L. D. THOMPSON, in “Proceedings of the 11th International Conference on Chemical Vapour Deposition”, edited by K. E. Spear and G. W. Culle (The Electrochemical Society, NJ, 1990) pp. 546–52.Google Scholar
  8. 8.
    D. R. BEHRENDT and M. SINGH, NASA Tech Brief LEW-15767 (1994).Google Scholar
  9. 9.
    C. L. SCHILLING, J. P. WESSON and T. C. WILLIAMS, Ceram. Bull. 62 (1983) 912.Google Scholar
  10. 10.
    D. A. WHITE, S. M. OLEFF and J. R. FOX, Adv. Ceram. Mater. 2 (1987) 53.CrossRefGoogle Scholar
  11. 11.
    T. OHKAWA and F. H. ELSNER, US Pat. 5468 358 (1995).Google Scholar
  12. 12.
    J. D. KATZ, Ann. Rev. Mater. Sci. 22 (1992) 153.CrossRefGoogle Scholar
  13. 13.
    D. J. PYSHER, K. C. GORETTA, R. S. HODDER Jr and R. E. TRESSLER, J. Am. Ceram. Soc. 72 (1989 284.CrossRefGoogle Scholar
  14. 14.
    T. MAH, N. L. HECHT, D. E. McCULLUM, J. R. HOENIGMAN, H. M. KIM, A. P. KATZ and H. A. LIPSITT, J. Mater. Sci. 19 (1984) 1191.CrossRefGoogle Scholar
  15. 15.
    K. P. NORTON and H. H. STRECKERT, Mater. Res. Soc. Symp. Proc. 250 (1992) 239.CrossRefGoogle Scholar
  16. 16.
    K. NEGITA, J. Am. Ceram. Soc. 69 (1986) C–308.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • H. H. Streckert
    • 1
  • K. P. Norton
    • 2
  • J. D. Katz
  • J. O. Freim
  1. 1.General AtomicsSan DiegoUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations