Journal of Materials Science

, Volume 32, Issue 21, pp 5779–5790 | Cite as

The use of X-ray line profile analysis to investigate crystallite size and microstrain for zirconia powders



X-ray line profile analysis is a powerful and convenient method to probe the microstructural characteristics of ceramics. Zirconia based ceramics possess a martensitic tetragonal to monoclinic transformation that is induced by size and strain factors. The selection of a suitable and reliable analysis method is critical to accurately derive the correct material property values. The procedures involved in an X-ray line profile broadening analysis are described in this study, which includes two simplified single peak methods. In all three different line profile analysis are employed to study the validity of derived data at various conditions for zirconia ceramics. The Warren-Averbach approach gives a reliable and reasonable crystallite size and microstrain. Crystallite sizes evaluated from different formulae or methods are compared with those measured by the Brunauer-Emmett-Teller method and transmission electron microscopy observation. The crystallite size distributions and particle size are also probed. It is found that the evaluated crystallite size distribution is similar to the measured particle size distribution measured using. Since it is impossible to obtain the crystallite size distribution from the single peak method, the ratios of the volume-weighted mean crystallite size, <D>V or Dβ and the area-weighted one <D>a are used to reveal information concerning the crystallite size distribution.


Crystallite Size Primary Particle Secondary Particle Column Length Zirconia Powder 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. J. HANNINK and M. V. SWAIN, Ann. Rev. Mater. Sci. 24 (1994) 359.CrossRefGoogle Scholar
  2. 2.
    M. RÜHLE and A. G. EVANS, Prog. Mater. Sci. 33 (1987) 85.CrossRefGoogle Scholar
  3. 3.
    A. VAN RIESSEN and B. H. O’CONNOR, J. Amer. Ceram. Soc. 76 (1993) 2133.CrossRefGoogle Scholar
  4. 4.
    A. H. HEUER, N. CLAUSSEN, W. M. KRIVEN and M. RÜHLE, ibid. 65 (1982) 642.CrossRefGoogle Scholar
  5. 5.
    F. F. LANGE, J. Mater. Sci. 17 (1982) 225.CrossRefGoogle Scholar
  6. 6.
    R. C. GARVIE and M. V. SWAIN, ibid. 20 (1985) 1193.Google Scholar
  7. 7.
    Idem, ibid. 20, 3479.Google Scholar
  8. 8.
    B. E. WARREN, Prog. Metal Phy. 8 (1959) 147.CrossRefGoogle Scholar
  9. 9.
    R. J. MATYI, L. H. SCHWARTZ and J. B. BUFF, Catal. Rev.-Sci. Engng. 29 (1987) 41.CrossRefGoogle Scholar
  10. 10.
    J. D. LIN and J. G. DUH, J. Amer. Ceram. Soc. 80 (1977) 92.CrossRefGoogle Scholar
  11. 11.
    J. G. DUH, H. T. DAI and B. S. CHIOU, ibid. 71 (1988) 813.CrossRefGoogle Scholar
  12. 12.
    J. G. DUH, H. T. DAI and W. Y. HSU, J. Mater. Sci. 23 (1988) 2786.CrossRefGoogle Scholar
  13. 13.
    J. G. DUH and M. Y. LEE, ibid. 24 (1989) 4467.CrossRefGoogle Scholar
  14. 14.
    J. G. DUH and Y. S. WU, J. Mater. Sci. Lett. 10 (1991) 1003.CrossRefGoogle Scholar
  15. 15.
    J. G. DUH and J. U. WAN, J. Mater. Sci. 27 (1992) 6197.CrossRefGoogle Scholar
  16. 16.
    Idem, J. Mater. Sci. Lett. 12 (1993) 575.CrossRefGoogle Scholar
  17. 17.
    R. DELHEZ, TH. H. DE KEIJSER and E. J. MITTEMEIJER, Fresenius Z. Anal. Chem. 312 (1982) 1.CrossRefGoogle Scholar
  18. 18.
    S. ENZO, G. FAGHERAZZI, A. BENEDETTI and S. POLIZZI, J. Appl. Cryst. 21 (1988) 526.CrossRefGoogle Scholar
  19. 19.
    P. SCARDI, L. LUTTEROTTI and R. DIMAGGIO, Powder Diffraction 6 (1991) 20.CrossRefGoogle Scholar
  20. 20.
    J. D. LIN and J. G. DUH, J. Mater. Sci. in press.Google Scholar
  21. 21.
    R. K. NANDI, H. K. KUO, W. SCHLOSBERG, G. WISSLER, J. B. COHEN and B. CRIST Jr, J. Appl. Cryst. 17 (1984) 22.CrossRefGoogle Scholar
  22. 22.
    W. H. SCHLOSBERG and J. B. COHEN, ibid. 16 (1983) 304.CrossRefGoogle Scholar
  23. 23.
    TH. H. DEKEIJSER, J. I. LANGFORD, E. J. MITTEMEIJER and A. B. P. VOGELS, ibid. 15 (1982) 208.Google Scholar
  24. 24.
    The software manual published by Mac Science, Corp., Tokyo, Japan, (1991).Google Scholar
  25. 25.
    A. R. STOKES, Proc. Phys. 61 (1948) 382.CrossRefGoogle Scholar
  26. 26.
    A. GUINIER, ‘‘X-ray diffraction’’, (W. H. Freeman, San Francisco, 1963) Ch. 5.Google Scholar
  27. 27.
    TH. H. DEKEIJSER, E. J. MITTEMEIJER and H. C. F. REZENDAAL, J. Appl. Cryst. 16 (1983) 309.CrossRefGoogle Scholar
  28. 28.
    R. DELHEZ, TH. H. DEKEIJSER and E. J. MITTEMEIJER, in ‘‘Accuracy in powder diffraction’’ edited by S. Block and C. R. Hubbard, National Bureau of Standards Special Pub. 567 (National Bureau of Standards, Washington DC, 1980) 213.Google Scholar
  29. 29.
    W. VOGEL, J. HASSE and R. HOSEMAN, Z. Naturforsch. A. 29 (1974) 1152.Google Scholar
  30. 30.
    J. L. SHI, C. W. LU, C. L. KUO, Z. X. LIN and T. S. YEN, Ceramics Int. 18 (1992) 155.CrossRefGoogle Scholar
  31. 31.
    R. SRINIVASAN, C. R. HUBBARD, O. B. CAVIN and B. H. DAVIS, Chem. Mater. 5 (1993) 27.CrossRefGoogle Scholar
  32. 32.
    G. ZORN, Aust. J. Phys. 41 (1988) 237.CrossRefGoogle Scholar
  33. 33.
    J. G. M. van BERKAM, R. DELHEZ, TH. T. DEKEIJSER and E. J. MITTEMEIJER, Phys. Stat. Sol. (a) 134 (1992) 335.CrossRefGoogle Scholar
  34. 34.
    R. DELHEZ, TH. H. DEKEIJSER, E. J. MITTEMEIJER and J. I. LANGFORD, Aust. J. Phys. 41 (1988) 213.CrossRefGoogle Scholar
  35. 35.
    S. RAO and C. R. HOUSKA, Acta. Cryst. A42 (1989) 14.Google Scholar
  36. 36.
    W. L. SMITH, J. Appl. Cryst. 5 (1972) 127.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

    • 1
    • 1
  1. 1.Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations