Advertisement

Journal of Materials Science

, Volume 32, Issue 21, pp 5761–5774 | Cite as

Sizing related kinetic and flow considerations in the resin infusion of composites

  • V. M KARBHARI
  • G. R PALMESE
Article

Abstract

Fibres used in preforms of resin transfer moulded (RTM) composites are coated with sizings, binders, and/or finishes that serve multiple purposes, including facilitating handling, protection of the fibres from compaction and process induced damage (including notching), aiding in compatibility and wetting of the fibres by the resin, and overall enhancement of the behavioural response of the composites. In this investigation four different sizings applied to S2 glass fibres are shown to significantly affect two aspects of RTM processing - resin infusion, and cure. In both cases phenomena at the microscopic level are seen to affect response variables at the macroscopic level. On a microscopic level, the behaviour of a thermosetting resin based composite is affected by the formation of interphase regions that greatly affect the cure kinetics and hence the mechanical and physical properties of the composite, which are dependent on the inter-constituent variations in local properties such as modulus and glass transition temperature. Similarly fibre-sizing-resin interactions occurring during the infusion stage affect wet-out and local flow behaviour through the development of stoichiometric imbalances in local regions. It is shown that the molecular interactions between the constituents (as initiated by the sizing) are affected by processing conditions such as temperature and rate of resin flow, and that heat evolution and resin rheology may be affected by the stoichiometric imbalances resulting from interphasial level reactions.

Keywords

Contact Angle Capillary Pressure Vinylester Resin System Dispersive Component 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. R. PALMESE and R. L. McCULLOUGH, J. Adhesion 44 (1994) 29.CrossRefGoogle Scholar
  2. 2.
    T. P. SKOURLIS and R. L. McCULLOUGH, Compos. Sci. Technol. 49 (1993) 363.CrossRefGoogle Scholar
  3. 3.
    D. L. LEYDEN and J. B. ATWATER, in ‘‘Silanes and other coupling agents’’, edited by K. L. Mittal (VSP, Utrecht, 1992) p. 143.Google Scholar
  4. 4.
    J. M. PARK and R. V. SUBRAMANIAN, ibid. p. 473.Google Scholar
  5. 5.
    F. J. BOERIO, C. A. GOSSELIN, R. G. DILLINGHAM and H. W. LIU, J. Adhesion 13 (1981) 159.CrossRefGoogle Scholar
  6. 6.
    B. MILLER, in “Surface characteristics of fibres and textiles”, Part II, edited by M. J. Schick (Marcel Dekker, New York, 1972).Google Scholar
  7. 7.
    D. H. KAEBLE, J. Adhesion 2 (1970) 66.CrossRefGoogle Scholar
  8. 8.
    K. L. ADAMS and L. REBENFELD, Textile Res. J. (1987) 647.Google Scholar
  9. 9.
    Idem, Polym. Compos. 12 (1991) 179.CrossRefGoogle Scholar
  10. 10.
    Idem, ibid. 12 (1991) 186.CrossRefGoogle Scholar
  11. 11.
    R. DAVÉ and S. HOULE, in Proceedings of the 5th Technical Conference of the American Society for Composites (Technomic Press, Lancaster, PA, 1990) pp. 539547.Google Scholar
  12. 12.
    V. M. KARBHARI, D. A. STEENKAMER and G. R. PALMESE, Society of Automotive Engineering Technical Paper 930166 (1993).Google Scholar
  13. 13.
    D. A. STEENKAMER, S. H. McKNIGHT, D. J. WILKINS and V. M. KARBHARI, J. Mater. Sci. 30 (1995) 3207.CrossRefGoogle Scholar
  14. 14.
    J. KOZENG, ‘‘Sitzungsberichte wiener akademie der wissenshaft’’, Abt. IIa (1927) p. 136.Google Scholar
  15. 15.
    P. C. CARMAN (1937) Trans. Inst. Chem. Eng. (1937) 150.Google Scholar
  16. 16.
    R. B. BIRD, W. E. STEWART and E. N. LIGHTFOOT, ‘‘Transport phenomena’’ (Wiley, New York, 1960).Google Scholar
  17. 17.
    A. E. SCHEIDEGGER, ‘‘Physics of flow through porous media’’ (University of Toronto Press, Toronto, 1974).Google Scholar
  18. 18.
    A. S. SANGANI and A. ACRIVOS, Int. J. Multiphase Flow 8 (1982) 343.CrossRefGoogle Scholar
  19. 19.
    J. E. DRUMMOND and M. I. TAHIR, ibid. 10 (1984) 515.CrossRefGoogle Scholar
  20. 20.
    M. V. BRUSCHKE, PhD thesis, University of Delaware (1992).Google Scholar
  21. 21.
    G. W. JACKSON and D. F. JAMES, Can. J. Chem. Engng. 64 (1986) 364.CrossRefGoogle Scholar
  22. 22.
    F. R. PHELAN, in Proceedings of the 7th Technical Conference on Composite Materials (Technomic Press, Lancaster, PA, 1992).Google Scholar
  23. 23.
    R. S. PARNAS and F. R. PHELAN, SAMPE Quarterly 22 (1991) 53.Google Scholar
  24. 24.
    G. R. PALMESE and V. M. KARBHARI, Polym. Compos. 16 (1995) 313.CrossRefGoogle Scholar
  25. 25.
    J. G. WILLIAMS, C. E. M. MORRIS and B. C. ENNIS, Polym. Engng. Sci. 14 (1974) 413.CrossRefGoogle Scholar
  26. 26.
    J. N. ISRAELACHVILI, ‘‘Intermolecular and surface forces’’ (Academic Press, New York, 1985) pp. 213220.Google Scholar
  27. 27.
    A. STEENKAMER, D. J. WILKINS and V. M. KARBHARI, Processing of Advanced Mater. 3 (1993) 181.Google Scholar
  28. 28.
    V. N. GONZÁLEZ and C. W. MACOSKO, in Proceedings of the 2nd International Conference of Reactive Processing of Polymers, edited by J. T. Lindt (University of Pittsburgh, Pittsburgh, PA) (1982).Google Scholar
  29. 29.
    C. L. TIEN, Adv. Appl. Mech. 27 (1990) 225.CrossRefGoogle Scholar
  30. 30.
    M. UENOYAMA and S. I. GÜÇERI, Analysis and simulation of structural reaction injection molding, Center for Composite Materials Report (CCM-91-09 (1991).Google Scholar
  31. 31.
    A. GARTON and W. T. K. STEVENSON, J. Polym. Sci. Part A: Polym. Chem. 26 (1988) 541.CrossRefGoogle Scholar
  32. 32.
    J. MIJOVIC and H. T. WANG, J. Appl. Polym. Sci. 37 (1989) 2661.CrossRefGoogle Scholar
  33. 33.
    A. GARTON, W. T. K. STEVENSON and S. P. WANG, J. Polym. Sci. Part A: Polym. Chem. 26 (1988) 1377.CrossRefGoogle Scholar
  34. 34.
    H. ISHIDA and J. L. KOENIG, J. Polym. Sci. Polym. Phys. Ed. 17 (1979) 615.CrossRefGoogle Scholar
  35. 35.
    D.-S. LEE and C. D. HAN, J. Appl. Polym. Sci. 33 (1987) 419.CrossRefGoogle Scholar
  36. 36.
    K.-W. LEM and C. D. HAN, ibid. 28 (1983) 3185.CrossRefGoogle Scholar
  37. 37.
    C. D. HAN and K.-W. LEM, ibid. 28 (1983) 3155.CrossRefGoogle Scholar
  38. 38.
    P. W. K. LAM, H. P. PLAUMANN and T. TRAN, ibid. 41 (1990) 3043.CrossRefGoogle Scholar
  39. 39.
    M. R. KAMAL and S. SOUROUR, Polym. Engng. Sci. 13 (1973) 59.CrossRefGoogle Scholar
  40. 40.
    P. W. K. LAM, Polym. Compos. 8 (1987) 427.CrossRefGoogle Scholar
  41. 41.
    G. ODIAN, ‘‘Principles of polymerization’’ (John Wiley, New York, 1981) p. 179.Google Scholar
  42. 42.
    T. J. TULIG and M. T. TIRRELL, Macromolecules 14 (1981) 1501.CrossRefGoogle Scholar
  43. 43.
    G. L. BATCH and C. W. MACOSKO, J. Appl. Polym. Sci. 44 (1992) 1711.CrossRefGoogle Scholar
  44. 44.
    J. GONS, W. O. SLAGTER and G. CHALLA, J. Polym. Sci.: Polym. Chem. Edn. 15 (1977) 771.Google Scholar
  45. 45.
    V. M. KARBHARI and G. R. PALMESE, in Proceedings of the 27th International SAMPE Technical Conference, Albuquerque, NM (1995) pp. 10351047.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • V. M KARBHARI
    • 1
  • G. R PALMESE
    • 2
  1. 1.Department of Applied Mechanics and Engineering SciencesUniversity of CaliforniaSan Diego La JollaUSA
  2. 2.Centre for Composite MaterialsUniversity of DelawareNewarkUSA

Personalised recommendations