Advertisement

Journal of Materials Science

, Volume 32, Issue 21, pp 5687–5695 | Cite as

Preparation of Al2TiO5 from alkoxides and the effects of additives on its properties

  • HONG LIM LEE
  • JONG YEOL JEONG
  • HYUNG MIN LEE
Article

Abstract

Al2TiO5 was prepared by the sol-gel method from alkoxides and its mechanical and thermal properties measured. The prepared Al2TiO5 powder was very fine and had a narrow particle-size distribution. The addition of mullite and Al2O3 to the prepared Al2TiO5 inhibited the grain growth during sintering, resulting in a decrease of microcracking and an increase of fracture strength. Al2TiO5/mullite composite exhibited a higher fracture strength than Al2TiO5/alumina composite. The thermal expansion coefficient of Al2TiO5 increased with the addition of mullite and alumina, and also increased with temperature up to 1000°C; however, it decreased in the temperature range between 1000 and 1200°C during heating, due to decomposition of Al2TiO5. The addition of mullite inhibited the decomposition of Al2TiO5, but the addition of Al2O3 accelerated it. Al2TiO5 prepared from metal alkoxides was also more stable than that prepared from the commercial alumina and titania powders.

Keywords

Thermal Expansion Alkoxide Titania Powder Metal Alkoxide Alumina Composite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. KOMEYA and M. MATSUI, in “Materials Science and Technology”, Vol. 11, edited by R. W. Cahn and P. Haasen and E. J. Kramer (VCH, New York, 1994) p. 528.Google Scholar
  2. 2.
    H. MORISHIMA, Z. KATO, K. UEMATSU, K. SAITO, T. YANO and N. OOTSUKA, J. Mater. Sci. Lett. 6 (1987) 389.CrossRefGoogle Scholar
  3. 3.
    Y. OHYA, K. HAMANO and Z. NAKAGAWA, J. Amer. Ceram. Soc. 70 (1987) C184.CrossRefGoogle Scholar
  4. 4.
    F. J. PARKER and R. W. RICE, ibid. 72 (1989) 2364.CrossRefGoogle Scholar
  5. 5.
    H. A. J. THOMAS and R. STEVENS, Br. Ceram. Trans. 88 (1989) 144.Google Scholar
  6. 6.
    Idem, ibid. 88 (1989) 184.Google Scholar
  7. 7.
    M. ISHITSUKA, T. SATO, T. ENDO and M. SHIMADA, J. Amer. Ceram. Soc. 70 (1987) 69.CrossRefGoogle Scholar
  8. 8.
    T. YANO, N. NAGAI, M. KIYOHARA, K. SAITO and N. OTSUKA, J. Ceram. Soc. Jpn 94 (1986) 970.Google Scholar
  9. 9.
    T. YANO, M. KIYOHARA and N. OTSUKA, ibid. 94 (1986) 1190.Google Scholar
  10. 10.
    Y. OHYA, K. HAMANO and Z. NAKAGAWA, ibid. 94 (1986) 665.Google Scholar
  11. 11.
    DUAN-FEN QIAN, Y. OHYA, K. HAMANO and Z. NAKAGAWA, ibid. 93 (1985) 315.Google Scholar
  12. 12.
    C. RAZIM and C. KANIUT, in “Designing with Structural Ceramics”, edited by R. W. Davidge and M. H. Van de Voorde (Elsevier Applied Science, New York, 1990) p. 273.Google Scholar
  13. 13.
    B. FREUDENBERG and A. MOCELLIN, J. Amer. Ceram. Soc. 70 (1987) 33.CrossRefGoogle Scholar
  14. 14.
    Idem, ibid. 71 (1988) 22.CrossRefGoogle Scholar
  15. 15.
    K. HAMANO, Y. OHYA and Z. NAKAGAWA, J. Ceram. Soc. Jpn 91 (1983) 94.Google Scholar
  16. 16.
    P. A. BRUGGER and A. MOCELLIN, J. Mater. Sci. 21 (1986) 4431.CrossRefGoogle Scholar
  17. 17.
    H. OKAMURA, E. A. BARRINGER and H. K. BOWEN, J. Amer. Ceram. Soc. 69 (1986) C22.CrossRefGoogle Scholar
  18. 18.
    H. OKAMURA, E. A. BARRINGER and H. K. BOWEN, J. Mater. Sci. 24 (1989) 1867.CrossRefGoogle Scholar
  19. 19.
    W. F. KLADNIG and H. MAYER, ibid. 25 (1990) 1973.CrossRefGoogle Scholar
  20. 20.
    B. E. YOLDAS, Amer. Ceram. Soc. Bull. 54 (1975) 289.Google Scholar
  21. 21.
    Idem, J. Mater. Sci. 21 (1986) 1087.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • HONG LIM LEE
    • 1
  • JONG YEOL JEONG
    • 1
  • HYUNG MIN LEE
    • 1
  1. 1.Department of Ceramic EngineeringYonsei UniversitySeoulKorea

Personalised recommendations