Advertisement

Journal of Materials Science

, Volume 32, Issue 8, pp 1969–1975 | Cite as

Morphologies and growth mechanisms of aluminium nitride whiskers

  • WEI-GUO MIAO
  • YIN WU
  • HE-PING ZHOU
Article

Abstract

Morphologies of AlN whiskers grown by the vapour–liquid–solid mechanism (VLS) were investigated. Several types of whisker structures, such as growth hill, wavy, crossed and stack structures, were found due to the variation of growth conditions. Growth mechanisms and orientations of AlN whiskers were also studied. Besides preferential crystallographic planes, several other planes were found to be growth layers due to the perturbation of the AlN lattice change caused by dissolution of oxygen. A screw dislocation growth mechanism was clearly confirmed. An oblique growth mechanism was found in this work, which may be the result of two processes: the vapour–liquid–solid process and dissolution of oxygen.

Keywords

Screw Dislocation Growth Layer Transmission Electron Micrograph Whisker Growth Aluminium Nitride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. SLACK, R. A. TRANZILLI, R. O. POHL and J. W. VANDERSANDER, J. Phys. Chem. Solids. 48 (1987) 641.CrossRefGoogle Scholar
  2. 2.
    M. HIRANO, K. KATO, T. ISOBE and T. HIRANO, J. Mater. Sci. 28 (1993) 4725.CrossRefGoogle Scholar
  3. 3.
    G.A. SLACK, J. Phys. Chem. Solids 34 (1973) 321.CrossRefGoogle Scholar
  4. 4.
    A. V. VIRKAR, T.B. JACKSON and R. A. CUTIER, J. Am. Ceram. Soc., 72 (1989) 2031.CrossRefGoogle Scholar
  5. 5.
    T.R. GURURAJA, W.A. SCHULZE, L. E. CROSS, R. E. NEWNHAM, B. A. AULD and Y. J. WANG, IEEE Trans. Sonics Ultrason., SU-32 (1985) 481.CrossRefGoogle Scholar
  6. 6.
    L. M. SHEPPARD, Am. Ceram. Soc. Bull. 69 (1990) 1801.Google Scholar
  7. 7.
    C. M. DRUM and J. W. MITCHELL, Appl. Phys. Lett. 4 (1964) 164.CrossRefGoogle Scholar
  8. 8.
    H. ITOH, H. MORIKAWA and K. SUGIYAMA, J. Crystal Growth. 94 (1989) 387.CrossRefGoogle Scholar
  9. 9.
    P. G. CACERES and H. K. SCHMID, J. Am. Ceram. Soc. 77 (1994) 977.CrossRefGoogle Scholar
  10. 10.
    F. C. FRANK, Discuss. Farad. Soc. 5 (1949) 48.CrossRefGoogle Scholar
  11. 11.
    R. S. WAGNER and W. C. ELLIS, Trans. Met. Soc. AIME 233 (1965) 1054.Google Scholar
  12. 12.
    A. BABENAU, in ‘‘Crystal Growth: an Introduction’’, edited by P. Hartman (North-Holland, Amsterdam 1973) p. 152.Google Scholar
  13. 13.
    C. M. DRUM, J. Appl. Phys. 36 (1965) 816.CrossRefGoogle Scholar
  14. 14.
    A. KATO and N. TAMARI, J. Crystal Growth 49 (1980) 199.CrossRefGoogle Scholar
  15. 15.
    P. BENNEMA, G. H. GILMER, in ‘‘Crystal Growth: an Introduction’’, edited by P. Hartman (North-Holland, 1973) p. 314Google Scholar
  16. 16.
    R. T. K. BAKER, Carbon. 27 (1989) 315.CrossRefGoogle Scholar
  17. 17.
    C. M. DRUM, J. Appl. Phys. 36 (1965) 824.CrossRefGoogle Scholar
  18. 18.
    C. C. EVANS and J. G. COOK, ‘‘Whiskers’’ (Butler and Tranner, London 1972) p. 27.Google Scholar
  19. 19.
    M. J. WANG and H. WADA, J. Mater. Sci. 25 (1990) 1690.CrossRefGoogle Scholar
  20. 20.
    M. L. FULLER, J. Appl. Phys. 15 (1964) 164.CrossRefGoogle Scholar
  21. 21.
    T. GOTO, J. TSUNEYOSHI, K. KAYA and T. HIRAI, J. Mater. Sci. 27 (1992) 247.CrossRefGoogle Scholar
  22. 22.
    A. BERGER, J. Am. Ceram. Soc. 74 (1991) 1148.CrossRefGoogle Scholar
  23. 23.
    J. V. MILEWSKI, F. D. GAC, J. J. PETROVIC and S. R. SKAGGS J. Mater. Sci. 20 (1985) 1160.CrossRefGoogle Scholar
  24. 24.
    D. HENDERSON, M. H. BRODSKY and P. CHAUDHARI, Appl. Phys. Lett. 25 (1974) 641.CrossRefGoogle Scholar
  25. 25.
    J. H. HARRIS, R. A. YOUNGMAN and R. G. TELLER, J. Mater. Res. 5 (1990) 1763CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • WEI-GUO MIAO
    • 1
  • YIN WU
    • 1
  • HE-PING ZHOU
    • 1
  1. 1.Department of Materials Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations