Journal of Materials Science

, Volume 32, Issue 6, pp 1613–1622 | Cite as

Mechanisms of particulate filled polypropylene finite plastic deformation and fracture



The plastic deformation and fracture of aluminium hydroxide filled polypropylene has been investigated. A transition between two mechanisms with an increase of the filler volume fraction has been observed. Below a critical filler volume content φcr ≈ 20 vol% (designated region 1) adhesive failure processes and polymer deformation in the neighbourhoods of different particles occur in an uncorrelated manner. Above this critical value (designated region 2) exfoliation along the surface of the initial portion of inclusions causes the formation of craze-like deformation zones transverse to the direction of the loading. The concentration of craze-like zones is essentially determined by the filler content and the level of interphase interaction which in turn depends on the particle size. In region 1 deformation occurs in a macro heterogeneous way with the formation and growth of a neck. The elongation to break decreases with an increase in the mean diameter of the filler phase. At φ>φcr composites, filled with small particles, fail in quasi brittle manner with the formation of a short and narrow neck. In contrast to the case for a small filler concentration, an increase of the inclusion size leads to an increase in the ultimate elongation and a tendency to macro homogeneous yielding. An explanation of the observed behaviour is proposed based on a change in adhesive failure conditions with filler content and size.


HDPE Inclusion Size Ultimate Strain Adhesive Failure Calcium Stearate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. E. NIELSEN, “Mechanical Properties of Polymers and Composites”. (Marcel Dekker, New York, 1974).Google Scholar
  2. 2.
    N. V. GORBUNOVA, N. N. KNUNYANTZ, V. A. TOPOLKARAEV, L. I. MANEVICH and V. G. OSHMIAN,Mekhanika Kompoz. Mater. (1990) 336.Google Scholar
  3. 3.
    V. A. TOCHIN, E. N. CSCHUPAK, V. V. TUMANOV, O. V. KULACHINCKAYA and M. I. GAY,ibid. (1984) 635.Google Scholar
  4. 4.
    I. L. DUBNIKOVA, A. I. PETROSYAN, V. A. TOPOLKARAEV, YU. M. TOVMASYAN, I. N. MESCHKOVA and F. S. D'YACHKOVSKII,Vysokomol. Soyed. A30 (1988) 2345.Google Scholar
  5. 5.
    V. A. TOPOLKARAEV, N. V. GORBUNOVA, I. L. DUBNIKOVA, T. V. PARAMZINA and F. S. D'YACHKOVSKII,ibid. A32 (1990) 2210.Google Scholar
  6. 6.
    I. L. DUBNIKOVA, V. A. TOPOLKARAEV, T. V. PARAMZINA, E. V. GOROKHOVA and F. S. D'YACHKOVSKII,ibid. A32 (1990) 841.Google Scholar
  7. 7.
    M. PEGORARO, A. PENATY, E. CAMMARATA and M. ALIVERTI, in “Polymer blends: Process, Morphology and Properties” (Plenum, New York 1984) Vol. 2, p. 205.CrossRefGoogle Scholar
  8. 8.
    V. A. TOPOLKARAEV, YU. M. TOVMASYAN, I. L. DUBNIKOVA, A. I. PETROSYAN, I. N. MESCHKOVA, A. A. BERLIN, YU. P. GOMZA and V. V. SCHILOV,Mekhanika Kompoz. Mater. (1987) 616.Google Scholar
  9. 9.
    N. N. KNUNYANTZ, A. V. ZHUK, V. G. OSHMIAN, V. A. TOPOLKARAEV and A. A. BERLIN,Mackromol. Chem.,Macromol. Symp. 44 (1991) 295.CrossRefGoogle Scholar
  10. 10.
    A. V. ZHUK, N. N. KNUNYATZ, V. A. TOPOLKARAEV, V. G. OSHMIAN and A. A. BERLIN,J. Mater. Sci. 28 (1993) 4595.CrossRefGoogle Scholar
  11. 11.
    V. G. OSHMIAN,Mekhanika Kompoz. Mater. (1992) 34.Google Scholar
  12. 12.
    I. L. DUBNIKOVA, E. V. GOROKHOVA, A. YA. GORENBERG, V. A. TOPOLKARAEV,Vysokomol. Soyed. A37 (995) p. 1535.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

    • 1
    • 1
    • 1
  1. 1.Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations