Advertisement

Journal of Materials Science

, Volume 32, Issue 6, pp 1393–1397 | Cite as

Transient liquid-phase bonding of alumina and metal matrix composite base materials

  • Y ZHAI
  • T. H NORTH
  • J SERRATO-RODRIGUES
Article

Abstract

Transient liquid-phase (TLP) bonding of aluminium-based metal matrix composite (MMC) and Al2O3 ceramic materials has been investigated, particularly the relationship between particle segregation, copper interlayer thickness, holding time and joint shear strength properties. The long completion time and the slow rate of movement of the solid–liquid interface during MMC/Al2O3 bonding markedly increased the likelihood of forming a particle-segregated layer at the dissimilar joint interface. Preferential failure occurred through the particle-segregated layer in dissimilar joints produced using 20 and 30 μm thick copper foils and long holding times (≥20 min). When the particle-segregated layer was very thin (<10 μm), joint failure was determined by the residual stress distribution in the Al2O3/MMC joints, not by preferential fracture through the particle-segregated layer located at the bondline. Satisfactory shear strength properties were obtained when a thin (5 μm thick) copper foil was used during TLP bonding at 853 K.

Keywords

Liquid Interface Metal Matrix Composite Copper Foil Bonding Temperature Preferential Fracture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. ZHOU, W. F. GALE and T. H. NORTH,Int. Mater. Rev. 40 (1996) 181.CrossRefGoogle Scholar
  2. 2.
    Z. LI, Y. ZHOU and T. H. NORTH,J. Mater. Sci. 30 (1995) 1075.CrossRefGoogle Scholar
  3. 3.
    Z. LI, W. FEARIS and T. H. NORTH,Mater. Sci. Technol. 11 (1995) 363.CrossRefGoogle Scholar
  4. 4.
    A. A. McFAYDEN, R. R. KAPOOR and T. W. EAGAR,Weld. J. 11 (1990) 339s.Google Scholar
  5. 5.
    T. ENJO, K. IKEUCHI, Y. MURAKAMI and N. SUZUKI,Trans. Jpn. Weld. Soc. 16 (1987) 285.Google Scholar
  6. 6.
    J. BRENNAN and J. A. PASK,J. Am. Ceram. Soc. 51 (1968) 569.CrossRefGoogle Scholar
  7. 7.
    J. A. CHAMPION, B. J. KEENE and J. M. SILKWOOD,J. Mater. Sci. 4 (1969) 39.CrossRefGoogle Scholar
  8. 8.
    T. TORVUND, O. GRONG, O. M. AKSELSEN and J. H. ULVENSOEN, in Proceedings of the 4th International Conference, “Brazing, High Temperature Brazing and Diffusion Bonding“, Aachen, Germany (edited by E. Lugscheider, Deutsche verband für Schwersstechnik, Aachen, 1995) pp. 114-19.Google Scholar
  9. 9.
    I. TUAH-POKU, M. DOLLAR and T. B. MASSALSKI,Metall. Trans. 19A (1988) 675.CrossRefGoogle Scholar
  10. 10.
    K. IKEUCHI, Y. ZHOU, H. KOKAWA and T. H. NORTH,ibid. 23A (1992) 2905.CrossRefGoogle Scholar
  11. 11.
    J. R. CAHOON,ibid. 3 (1972) 1324.CrossRefGoogle Scholar
  12. 12.
    T. B. MASSALSKI (ed.), “Binary Alloy Phase Diagrams” (ASM, Metals Park, OH, 1986).Google Scholar
  13. 13.
    D. M. STEFANESCU, B. K. DHINDAW, S. A. KACAR and A. MOITRA,Metall. Trans. 19A (1988) 2847.CrossRefGoogle Scholar
  14. 14.
    Y. C. KIM, K. SAIDA, Y. ZHOU and T. H. NORTH,Trans. Jpn Weld. Res. Inst. 22 (1993) 121.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • Y ZHAI
    • 1
  • T. H NORTH
  • J SERRATO-RODRIGUES
    • 2
  1. 1.Department of Metallurgy and Materials ScienceUniversity of TorontoTorontoCanada
  2. 2.Instituto de Investigaciones MetallurgicasUniversidad Michoacana San Nicolas de HidalgoMoreliaMexico

Personalised recommendations