Journal of Materials Science

, Volume 32, Issue 8, pp 2071–2075 | Cite as

Electrochemical corrosion behaviours of Fe68Ni14-xMoxSi2B16 metallic glasses in 1N HCl and 1N H2SO4

  • V. S RAJA


Electrochemical corrosion behaviours of five Fe68Ni14-xMoxSi2B16 glasses with x=0, 1, 2, 3 and 4 have been investigated in both 1 N HCl and 1 N H2SO4 solutions using potentiodynamic polarization and a.c. impedance spectroscopic techniques. The polarization and impedance results show that all the alloys possess inferior corrosion resistance which has been attributed to the low Ni content on one hand and the absence of passivators such as Cr and P on the other. Interestingly the alloys have been found to show weak passivation in more aggressive HCl and not in relatively mild H2SO4 solution. This has been explained in terms of dual behaviours of Mo in HCl and H2SO4 based on impedance data and literature work. The present study attempts to correlate impedance data with polarization data through the parameter polarization resistance and indicates that both values are comparable only when an alloy undergoes active dissolution and not when it exhibits passivity.


Corrosion Resistance Metallic Glass Potentiodynamic Polarization Glassy Alloy Saturated Calomel Reference Electrode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. EGAMI, P. J. FLANDENS and C. D. GRAHAM Jr, in American Institute of Physics (AIP) Conference Proceedings No. 24, edited by C. D. Graham Jr, G. M. Lander and J. J. Rhyne (New York, 1975) p. 697.Google Scholar
  2. 2.
    R. HASEGAWA and C. P. CHEN, US patent no. 4152144 (1979).Google Scholar
  3. 3.
    R. HASEGAWA, G. E. FISH and V. R. V. RAMANAN, in Proceedings of the 4th International Conference on Rapidly Quenched Metals edited by T. Masumoto and K. Suzuki (Japan Institute of Metals, Aoba Aramaki, Sendai, Japan, 1981) Vol. 2, p. 929.Google Scholar
  4. 4.
    M. NAKA, K. HASHIMOTO and T. MASHUMOTO, J. Non-Cryst. Solids 28 (1978) 403.CrossRefGoogle Scholar
  5. 5.
    K. ASAMI, M. NAKA, K. HASHIMOTO and T. MASUMOTO, J. Electrochem. Soc. 127 (1980) 2130.CrossRefGoogle Scholar
  6. 6.
    M. NAKA, K. HASHIMOTO and T. MASUMOTO, J. Non-Cryst. Solids 29 (1978) 61.CrossRefGoogle Scholar
  7. 7.
    M. NAKA, K. HASHIMOTO, A. INONE and T. MASUMOTO, J. Non-Cryst. Solids 31 (1979) 347.CrossRefGoogle Scholar
  8. 8.
    V. S. RAJA, KISHORE and S. RANGANATHAN, Corrosion 44 (1988) 263.CrossRefGoogle Scholar
  9. 9.
    J. R. AMBROSE, Corrosion 34 (1978) 27.CrossRefGoogle Scholar
  10. 10.
    M. SEO and N. SATO, Corrosion paper No. 138, NACE, New Orleans, LA, 1989.Google Scholar
  11. 11.
    J. BESSONE, C. MAYER, K. JUTTNER and W. J. LORENZ, Electrochim. Acta 28 (1983) 171.CrossRefGoogle Scholar
  12. 12.
    F. MANSFELD and J. C. S. FERNANDES, Corrosion Sci., 34 (1993) 2105.CrossRefGoogle Scholar
  13. 13.
    I. EPELBOIN, M. KEDDAM and J. C. LESTRADE, Trans. Farad. Soc. 56 (1981) 264.Google Scholar
  14. 14.
    R. D. AMSTRONG and K. EDMONDSON, Electrochim. Acta 18 (1973) 937.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

    • 1
    • 1
    • 2
  • V. S RAJA
    • 2
  1. 1.School of PhysicsUniversity of HyderabadIndia
  2. 2.Corrosion Science and EngineeringIndian Institute of TechnologyBombayIndia

Personalised recommendations