Journal of Materials Science

, Volume 32, Issue 4, pp 949–955 | Cite as

Cyclic fatigue of reaction-bonded silicon nitride at elevated temperatures

  • K. T FABER


Cyclic and static loading tests were performed on reaction-bonded silicon nitride from 1000–1400 °C in air. This porous, fine-grained material contained no glassy grain-boundary phase and exhibited no slow crack growth at room temperature. Under cyclic loading, the crack-growth behaviour at 1000 °C was similar to room-temperature results; however, at 1200 and 1400 °C crack-growth rates increased significantly. Under static loading, significant crack growth was detected at 1000 °C and increased with temperature. Most of the crack growth under cyclic loading was attributed to slow crack-growth mechanisms, but evidence of cyclic crack-growth mechanisms were also observed. Oxidation played a major role in crack-growth velocity at high temperature.


Cyclic Loading Silicon Nitride Slow Crack Growth Cyclic Fatigue Primary Crack 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. EVANS, L. R. RUSSELL and D. W. RICHERSON, Metall. Trans. 6A (1975) 707.CrossRefGoogle Scholar
  2. 2.
    T. FETT, G. HIMSOLT and D. MUNZ, Adv. Ceram. Mater. 1 (1986) 179.CrossRefGoogle Scholar
  3. 3.
    M. MASUDA, T. SOMA, M. MATSUI and I. ODA, J. Ceram. Soc. Jpn 97 (1989) 612.CrossRefGoogle Scholar
  4. 4.
    T. OHJI, Y. YAMAUCHI, W. KANEMATSU and S. ITO, ibid. 98 (1990) 1070.CrossRefGoogle Scholar
  5. 5.
    M. G. JENKINS, M. K. FERBER and C.-K. J. LIN, J. Amer. Ceram. Soc. 76 (1993) 788.CrossRefGoogle Scholar
  6. 6.
    S.-Y. LIU, I.-W. CHEN and T.-Y. TIEN, ibid. 77 (1994) 137.CrossRefGoogle Scholar
  7. 7.
    U. RAMAMURTY, A. S. KIM and S. SURESH, ibid. 76 (1993) 1953.CrossRefGoogle Scholar
  8. 8.
    U. RAMAMURTY, T. HANSSON and S. SURESH, ibid. 77 (1994) 2985.CrossRefGoogle Scholar
  9. 9.
    G. ZIEGLER, J. HEINRICH and G. WOTTING, J. Mater. Sci. 22 (1987) 3041.CrossRefGoogle Scholar
  10. 10.
    A. G. EVANS and R. W. DAVIDGE, ibid. 5 (1970) 315.Google Scholar
  11. 11.
    M. E. WASHBURN and H. R. BAUMGARTNER, in “Ceramics for High Performance Applications”, edited by J. J. Burke, A. E. Gorum and R. N. Katz (Brook Hill, Chestnut Hill, MA, 1975) p. 479.Google Scholar
  12. 12.
    Y. G. GOGOTSI and G. GRATHWOHL, J. Amer. Ceram. Soc. 76 (1993) 3093.CrossRefGoogle Scholar
  13. 13.
    L. CHUCK, University of Dayton, personal communication (1990).Google Scholar
  14. 14.
    P. CHANTIKUL, G. R. ANSTIS, B. R. LAWN and D. B. MARSHALL, J. Amer. Ceram. Soc. 64 (1981) 539.CrossRefGoogle Scholar
  15. 15.
    J. E. SRAWLEY and B. CROSS, “Cracks and Fracture”, ASTMSTP 601(American Society for Testing and Materials, Philadelphia, PA, 1976) p. 559.CrossRefGoogle Scholar
  16. 16.
    C. JANSSEN, in “Proceedings Tenth International Congress on Glass” (Ceramic Society of Japan, Tokyo, 1974) p. 10.23.Google Scholar
  17. 17.
    H. CAI, K. T. FABER and E. R. FULLER, J. Amer. Ceram. Soc. 75 (1992) 3111.CrossRefGoogle Scholar
  18. 18.
    T. A. MICHALSKE, Engng Fract. Mech. 45 (1993) 637.CrossRefGoogle Scholar
  19. 19.
    R. J. CHRISTENSEN and K. T. FABER, J. Amer. Ceram. Soc. (1995), 79 (1996) 425.CrossRefGoogle Scholar
  20. 20.
    S. H. KNICKERBOCKER, A. ZANGVIL and S. D. BROWN, ibid. 67 (1984) 365.CrossRefGoogle Scholar
  21. 21.
    K. HATANAKA, H. SHIOTA and T. ANDO, JSME Int. J. 34 (1991) 351.Google Scholar
  22. 22.
    A. K. MUKHOPADHYAY and D. CHAKRABORTY, Mater. Sci. Engng A122 (1989) 173.CrossRefGoogle Scholar
  23. 23.
    G. GRATHWOHL and F. THÜMMLER, J. Mater. Sci. 13 (1978) 1177.CrossRefGoogle Scholar
  24. 24.
    M. K. FERBER and M. G. JENKINS, J. Amer. Ceram. Soc. 75 (1992) 2453.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

    • 1
  • K. T FABER
    • 1
  1. 1.Department of Materials Science, Robert R. McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonUSA

Personalised recommendations