Advertisement

Siberian Mathematical Journal

, Volume 43, Issue 4, pp 746–755 | Cite as

Abstract Clones and Operads

  • S. N. Tronin
Article

Abstract

We establish a connection between abstract clones and operads, which implies that both clones and operads are particular instances of a more general notion. The latter is called W-operad (due to a close resemblance with operads) and can be regarded as a functor on a certain subcategory W, of the category of finite ordinals, with some rather natural properties. When W is a category whose morphisms are the various bijections, the variety of W-operads is rationally equivalent to the variety of operads in the traditional sense. Our main result claims that if W coincides with the category of all finite ordinals then the variety of W-operads is rationally equivalent to the variety of abstract clones.

operad abstract clone variety rational equivalence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skornyakov L. A. (ed.), General Algebra. Vol. 2 [in Russian], Nauka, Moscow (1991).Google Scholar
  2. 2.
    May J. P., The Geometry of Iterated Loop Spaces, Springer-Verlag, Berlin (1972). (Lecture Notes in Math.; 271).Google Scholar
  3. 3.
    Boardman J. M. and Vogt R. M., Homotopy Invariant Algebraic Structures on Topological Spaces [Russian translation], Mir, Moscow (1977).Google Scholar
  4. 4.
    Tronin S. N., “Abstract clones and operads,” in: Abstracts: Logic and Applications: The International Conference on the Occasion of the Sixtieth Birthday of Academician Yu. L. Ershov, Novosibirsk, 4–6 May 2000, Novosibirsk, 2000, p. 100.Google Scholar
  5. 5.
    Artamonov V. A., “Clones of polylinear operations,” Uspekhi Mat. Nauk, 24, No. 1, 47–59 (1969).Google Scholar
  6. 6.
    Ginzburg V. and Kapranov M., “Koszul duality for operads,” Duke Math. J., 76, No. 1, 203–272 (1994).Google Scholar
  7. 7.
    Ginzburg V. and Kapranov M., “Erratum to ‘Koszul duality for operads’,” Duke Math. J., 80, No. 1, 293 (1995).Google Scholar
  8. 8.
    Operads: Proc. of Renaissance Conferences. V. 202, J.-L. Loday, J. D. Stasheff, A. A. Voronov (Eds.), Contemp. Math., 1996.Google Scholar
  9. 9.
    Kapranov M., “Operads and algebraic geometry,” Proc. Intern. Congr. Math., Berlin, Aug. 18–27, 1998, V. II: Invited Lectures, Berlin, 1998. pp. 277–286. (Documenta Math. Extra Volume ICM. II).Google Scholar
  10. 10.
    Smirnov V. A., Simplicial and Operad Methods in Algebraic Topology, Amer. Math. Soc., Providence, R.I. (2001). (Translations of Math. Monographs; 198.)Google Scholar
  11. 11.
    Johnstone P. T., Topos Theory [Russian translation], Mir, Moscow (1986).Google Scholar
  12. 12.
    Mal'tsev A. I., “Structure characterization of some classes of algebras,” Dokl. Akad. Nauk SSSR, 120, No. 1, 29–32 (1958).Google Scholar
  13. 13.
    Pinus A. G., “Invariants of rational equivalence,” Sibirsk. Mat. Zh., 41, No. 2, 430–436 (2000).Google Scholar
  14. 14.
    Tronin S. N., “On varieties defined by polylinear identities,” in: Abstracts: XIX All-Union Algebraic Conference, 9–11 September 1987. Part 2, L'vov, 1987, p. 280.Google Scholar
  15. 15.
    Tronin S. N., “On some properties of finitary algebraic theories,” in: Abstracts: V Siberian School on Varieties of Algebraic Systems, 1–5 July 1988, Barnaul, 1988, pp. 68–70.Google Scholar
  16. 16.
    Tronin S. N., “On some properties of algebraic theories of varieties of linear algebras. I. Varieties defined by polylinear identities,” submitted to VINITI August 11, 1988, No. 6511–B88.Google Scholar
  17. 17.
    Tronin S. N., On Retractions of Free Algebras and Modules [in Russian], Dis. Kand. Fiz.-Mat. Nauk, Kishinív (1989).Google Scholar
  18. 18.
    Tronin S. N., “Varieties of superalgebras and linear operads,” in: The Theory of Functions, Its Applications, and Related Problems: Proceedings of the School-Conference Dedicated to the Occasion of the 130 Birthday of D. F. Egorov, Kazan', 13–18 September 1999, Kazansk. Mat. Obshch., Kazan', 1999, pp. 224–227.Google Scholar
  19. 19.
    Tronin S. N. and Kopp O. A., “Matrix linear operads,” Izv. Vuzov Mat., 6, 52–63 (2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • S. N. Tronin
    • 1
  1. 1.Kazan' State UniversityKazan'

Personalised recommendations