Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 249, Issue 2, pp 369–374 | Cite as

Decontamination of polluted urban soils by plants. Our possibilities to enhance the uptake of heavy metals

  • I. V. ShtangeevaEmail author
  • A. Vuorinen
  • B. Rietz
  • G. Christiansen
  • L. Carlson
Article

Abstract

Pot experiments were carried out to assess the influence of two plantspecies on chemistry of polluted and unpolluted urban soils. Change in pHand acid neutralization capacity of the soils, as well as variations in elementalcomposition of soil leachates and in total concentrations of elements in thesoil were studied by INAA and ICP-AES. Concentrations of 28 elements in plantswere determined by INAA. Cultivation of plants led to significant change insoil parameters. In particular, acid neutralization capacity of polluted soilincreased, resulting in increase in element uptake.

Keywords

Physical Chemistry Heavy Metal Inorganic Chemistry Total Concentration Elementalcomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. K. Domelly,J. S. Fletcher, Bioremediation Through Rhizosphere Technology, T.A. Anderson,J.R. COATS (Eds), American Chemical Society, Washington DC, 1994, p. 93.CrossRefGoogle Scholar
  2. 2.
    J. Chen,J. W. Huang,T. Caspar,S. D. Cunninghan, Phytoremediation of Soil and Water Contaminants, E. L. Kruger,T. A. Anderson,J. R. Coats (Eds), American Chemical Society, Washington, DC, 1997, p. 264.CrossRefGoogle Scholar
  3. 3.
    I. V. Shtangeeva,N. D. Nugaeva,K. Heydorn,E. Damsgaard, Metal Ions in Biology and Medicine, Vol. 5, P. Collery,P. Braetter,V. Negretti De Braetter,L. Khassanova (Eds), John Libbey Eurotext, Paris, 1998, p. 349.Google Scholar
  4. 4.
    E. A. H. Pilon-Smith,Y.-L. Zhu, Tailings and Mine Waste'00, Balketa, Rotterdam, 2000, p. 317.Google Scholar
  5. 5.
    S. Sauve,C. E. Martinez,M. McBride,W. Hendershot, Soil Sci. Soc. Amer., 64 (2000) 595.CrossRefGoogle Scholar
  6. 6.
    D. G. Strawn,D. L. Sparks, Soil Sci. Soc. Amer., 64 (2000) 144.CrossRefGoogle Scholar
  7. 7.
    N. J. Jarvis,K. G. Villholth,B. Ulen, European J. Soil Sci., 50 (1999) 621.CrossRefGoogle Scholar
  8. 8.
    W. Wilcke, Soil Sci. Soc. Amer., 64 (2000) 138.CrossRefGoogle Scholar
  9. 9.
    W. H. O. Ernst, Metal-Contaminated Soils: In Situ Inactivation and Phytorestoration, J. Vangronsveld,S. D. Cunningham (Eds), Landes Bioscience, Austin, TX, 1998, p. 17.Google Scholar
  10. 10.
    F. De Corte,A. Simonits,A. De Wispelaere,A. Elek, J. Radioanal. Nucl. Chem., 133 (1989) 3.CrossRefGoogle Scholar
  11. 11.
    P. H. Wyatt, Geological Survey of Canada, Paper 84–1A, 1984, p. 597.Google Scholar
  12. 12.
    D. A. Baker, Metals and Micronutrients: Uptake and Utilization by Plants, D. A. Robb,W. S. Pierpoint (Eds), Academic Press, New York, 1983, p. 3.CrossRefGoogle Scholar
  13. 13.
    I. V. Shtangeeva, Chem. Ecol., 11 (1995) 85.CrossRefGoogle Scholar
  14. 14.
    S. Srivastava,S. Prakash,M. M. Srivastava, Plant Soil, 212 (1999) 203.CrossRefGoogle Scholar
  15. 15.
    M. R. Bakker,A. Dieffenbach,J. Ranger, Plant Soil, 209 (1999) 209.CrossRefGoogle Scholar
  16. 16.
    T. W. Speir,H. A. Kettles,H. J. Percival,A. Parshotam, Soil Biol. Biochem., 31 (1999) 1953.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2001

Authors and Affiliations

  • I. V. Shtangeeva
    • 1
    Email author
  • A. Vuorinen
    • 2
  • B. Rietz
    • 3
  • G. Christiansen
    • 3
  • L. Carlson
    • 4
  1. 1.Institute of Earth CrustSt.Petersburg State UniversitySt.PetersburgRussia
  2. 2.Department of GeologyUniversity of HelsinkiFinland
  3. 3.Risoe National LaboratoryRoskildeDenmark
  4. 4.Geological Survey of FinlandFinland

Personalised recommendations