Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 249, Issue 2, pp 465–468 | Cite as

An in vitro investigation of human enamel wear by restorative dental materials

  • L. K. AdachiEmail author
  • M. Saiki
  • T. N. de Campos
Article

Abstract

A radiometric method was applied to assess enamel wear by another enameland by restorative materials. The radioactive enamel was submitted to wearin a machine which allows sliding motion of an antagonistic surface in contactwith the radioactive enamel. The enamel wear was evaluated by measuring thebeta-activity of 32P transferred to water from this irradiatedtooth. Results obtained indicated that dental porcelains cause pronouncedenamel wear when compared with that provoked by another natural enamel orby resin materials. Resin materials caused less enamel wear than another naturalenamel. Vickers microhardness data obtained for antagonistic materials showeda correlation with the wear caused to the enamel.

Keywords

Physical Chemistry Inorganic Chemistry Vickers Microhardness Dental Material Restorative Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Mahalick,F. J. Knap,E. J. Weiter, J. Am. Dent. Assoc., 82 (1971) 154.CrossRefGoogle Scholar
  2. 2.
    D. C. Jagger,A. Harrison, J. Oral Rehab., 22 (1995) 275.CrossRefGoogle Scholar
  3. 3.
    A. Harrison,T. T. Lewis, J. Biomed. Mater. Res., 9 (1975) 341.CrossRefGoogle Scholar
  4. 4.
    R. DeLong,W. H. Douglas, J. Dent. Res., 62 (1983) 32.CrossRefGoogle Scholar
  5. 5.
    D. C. Jagger,A. Harrison, J. Prosthet. Dent., 72 (1994) 320.CrossRefGoogle Scholar
  6. 6.
    R. DeLong,C. Sasik,M. R. Pintado,W. H. Douglas, Dent. Mater., 5 (1989) 266.CrossRefGoogle Scholar
  7. 7.
    R. DeLong,M. R. Pintado,W. H. Douglas, J. Prosth. Dent., 68 (1992) 42.CrossRefGoogle Scholar
  8. 8.
    J. M. Powell,R. W. Phillips,R. D. Norman, J. Dent. Res., 54 (1975) 1183.CrossRefGoogle Scholar
  9. 9.
    J. J. Hefferren, J. Dent. Res., 55 (1976) 563.CrossRefGoogle Scholar
  10. 10.
    R. SÖremark,K. Samsahl, Arch. Oral Biol., 6 (1961) 275.CrossRefGoogle Scholar
  11. 11.
    S. Vieira, Introduç ã o à bioestatística, Ed. Campus, Rio de Janeiro, 1991, p. 146.Google Scholar
  12. 12.
    A. S. Al-Hiyasat,W. P. Saunders,S. W. Sharkey,G. M. Smith,W. H. Gilmour, J. Dent., 26 (1998) 487.CrossRefGoogle Scholar
  13. 13.
    C. H. Hacker,W. C. Wagner,M. E. Razzoog, J. Prosthet. Dent., 75 (1996) 14.CrossRefGoogle Scholar
  14. 14.
    J. F. McCabe, Applied Dental Materials, Blackwell Scientific Publications, Oxford, 1990.Google Scholar
  15. 15.
    G. MaupomÉ,M. Aguilar-Avila,H. Medrano-Ugalde,A. Borges-Yanes, Caries Res., 33 (1999) 140.CrossRefGoogle Scholar
  16. 16.
    J. M. Powers, Tabelas de propriedades físicas e mecâ nicas, in: W. J.O'Brien,G. Ryge, Materiais Dentários, Ed. Interamericana Ltda., Rio de Janeiro, 1981.Google Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2001

Authors and Affiliations

  1. 1.Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SPSão Paulo, SPBrazil
  2. 2.Departamento de PróteseFaculdade de Odontologia da Universidade de Săo PauloSăo Paulo, SPBrazil

Personalised recommendations