Advertisement

Journal of Intelligent Information Systems

, Volume 9, Issue 2, pp 125–155 | Cite as

An Optimal Cache for a Federated Database System

  • Alfredo Goñi
  • Arantza Illarramendi
  • Eduardo Mena
  • José Miguel Blanco
Article

Abstract

Federated database systems allow users to query different autonomousdatabases with a single request. The answer to those requests mustbe found on the underlying databases. This answering process can beimproved if some data are cached within the federated databasesystem. The article presents an approach that allows the definitionof an optimal cache for a federated database system according to aset of parameters. We show the types of objects to be cached, thecost model used to decide which ones are worth caching and the methodto find the optimal set of objects to cache. Moreover, this approachcontinuously updates the set of parameter values and periodicallyredefines the optimal cache in order to reflect changes in the userrequirements or in the implementation features of the underlyingdatabases. The article also presents how cached data can be used toanswer a user query. Furthermore, the advantages of using a KnowledgeRepresentation System based on Description Logics in order to definean optimal cache for a federated database system are shown throughthe paper.

description logics federated databases caching techniques query processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Adali, K.S. Candan, Y. Papakonstantinou, and V.S. Subrahmanian. Query caching and optimization in distributed mediator systems. In Proceedings ACM SIGMOD-96, Montreal, Canada, 1996.Google Scholar
  2. R. Ahmed, P. Smedt, W. Du, W. Kent, M. Ketabchi, and W.A. Litwin. The Pegasus heterogeneous multidatabase system. IEEE Computer, 24:19–27, December 1991.Google Scholar
  3. R. Alonso, D. Barbará, and H. Garcia-Molina. Data caching issues in an information retrieval system. ACM TODS, 15:359–384, September 1990.Google Scholar
  4. P.M.G. Apers, A.R. Hevner, and S.B. Yao. Optimization algorithms for distributed queries. IEEE Transactions on Software Engineering, 9(1):57–68, 1983.Google Scholar
  5. Y. Arens, C.Y. Chee, C. Hsu, and C.A. Knoblock. Retrieving and integrating data from multiple information sources. International Journal of Intelligent and Cooperative Information Systems, 2(2):127–158, 1993.Google Scholar
  6. Y. Arens and C. A. Knoblock. Intelligent caching: Selecting, representing and reusing data in an information server. In Proceedings of the Third International Conference on Information and Knowledge Management CIKM, 1994.Google Scholar
  7. D. Bell and J. Grimson. Distributed Database Systems. Addison-Wesley, 1992.Google Scholar
  8. E. Bertino, M. Negri, G. Pelagatti, and L. Sbatella. Integration of heterogeneous database applications through an object-oriented interface. Information Systems, 14(5), 1989.Google Scholar
  9. J.M. Blanco, A. Illarramendi, and A. Goñi. Building a federated database system: an approach using a knowledge based system. International Journal of Intelligent and Cooperative Information Systems, 3(4):415–455, December 1994.Google Scholar
  10. J.M. Blanco, A. Illarramendi, A. Goñni, and J. Bermúdez. Advantages of using a terminological system for integrating databases. In Proc. of the International Workshop on Description Logics. Bonn. Germany, 1994.Google Scholar
  11. A. Borgida, R.J. Brachman, D.L. McGuinness, and L.A. Resnick. CLASSIC: A structural data model for objects. In Proceedings ACM SIGMOD-89, Portland, Oregon, 1989.Google Scholar
  12. M. Buchheit, M. Jeusfeld, W. Nutt, and M. Staudt. Subsumption between queries to object-oriented databases. Information Systems, 19(1), 1994.Google Scholar
  13. M.J. Carey, M.J. Franklin, M. Livny, and E.J. Shekita. Data caching tradeoffs in client-server DBMSarchitectures. In Proc. of 1991 ACM SIGMOD, May, 1991.Google Scholar
  14. S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems. Mac Graw Hill, 1984.Google Scholar
  15. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and J. Widom. The TSIMMISproject: Integration of heterogeneous information sources. In Proceedings of IPSJ conference, Tokyo, Japan, 1994.Google Scholar
  16. C. Collet, M. N. Huhns, and W. Shen. Resource integration using a large knowledge base in CARNOT. IEEE Computer, pages 55–62, December 1991.Google Scholar
  17. B. Czejdo and M. Taylor. Integration of database systems using an object-oriented approach. In First International Workshop on Interoperability in Multidatabase Systems, April 1991.Google Scholar
  18. U. Dayal. Query processing in a multidatabase system. In Query Processing in Database Systems, pages 81–108. Springer-Verlag, 1985.Google Scholar
  19. A. Delis and N. Roussopoulos. Performance comparison of three modern DBMS architectures. IEEE Transactions on Software Engineering, 19(2), February 1993.Google Scholar
  20. W. Du, R. Krishnamurthy, and M. Shan. Query optimization in heterogeneous DBMS. In Proc. of the 18th VLDB Conference, 1992.Google Scholar
  21. W.D. Du, M. Shan, and U. Dayal. Reducing multidatabase query response time by tree balancing. In Proc. of 1995 ACM SIGMOD, May, 1995.Google Scholar
  22. A. Goñi, J.M. Blanco, and A. Illarramendi. Connecting knowledge bases with databases: a complete mapping relation. In Proc. of the 8th ERCIM Workshop. Trondheim, Norway, 1995.Google Scholar
  23. H. Gupta. Selection of views to materialize in a data warehouse. In Proc. of Intern. Conference of Database Theory. Athens, Greece., 1997.Google Scholar
  24. M. Keller and J. Basu. A predicate-based caching scheme for client-server database architectures. VLDB, 5:35–47, 1996.Google Scholar
  25. W. Kim. Modern Database Systems. ACM press, 1995.Google Scholar
  26. J. A. Larson, S. B. Navathe, and R. Elmasri. A theory of attribute equivalence in databases with application to schema integration. IEEE TOSE, SE-15(4), April 1989.Google Scholar
  27. A.Y. Levy, A. Rajaram, and J.D. Ullman. Answering queries using limited external query processors. In Proc. of Symposium on principles of Database Systems (PODS). Montreal, Canada., 1996.Google Scholar
  28. A.Y. Levy, D. Srivastava, and T. Kirk. Data model and query evaluation in global information systems. Journal of Intelligent Information Systems, 5(2):121–143, September 1995.Google Scholar
  29. H. Lu, B. Ooi, and C. Goh. On global multidatabase query optimization. SIGMOD RECORD, 21(4):6–11, December 1992.Google Scholar
  30. S. Navathe, S. K. Gala, and S.. Geum. Federated information bases: A loose-coupled integration of databases systems and application subsystems. In Proc. of the 4th. Database Symposium, 1989.Google Scholar
  31. M. T. Ozsu and P. Valduriez. Distributed Databases: Principles and Systems. Prentice Hall, 1991.Google Scholar
  32. C. Peltason, A. Schmiedel, C. Kindermann, and J. Quantz. The BACK system revisited. Technical University Berlin. KIT-Report 75, September 1989.Google Scholar
  33. E. Pitoura, O. Bukhres, and A. Elmagarmid. Object orientation in multidatabase systems. ACM Computing Surveys, 27(2):141–195, June 1995.Google Scholar
  34. M.A. Qutaishat, N.J. Fiddian, and W.A. Gray. Association merging in a schema meta-integration system for a heterogeneous object-oriented database environment. In Lecture Notes in Computer Science Proc. 10th British National Conference on Databases, 1992.Google Scholar
  35. N. Roussopoulos. View indexing in relational databases. ACM TODS, 7:258–290, 1982.Google Scholar
  36. N. Roussopoulos. The logical access path schema of a database. IEEE Transactions on Software Engineering, 8:563–573, November 1982.Google Scholar
  37. S. Sahni. Approximate algorithms for the 0/1 knapsack problem. Journal of the ACM, 22:115–124, January 1975.Google Scholar
  38. K. Schild. A correspondence theory for terminological logics–preliminary report. In Proocedings IJCAI’91, Sidney, Australia, August 1991.Google Scholar
  39. T. Sellis. Efficiently supporting procedures in relational database systems. In Proceedings of the ACM SIGMOD Conference, 1987.Google Scholar
  40. A.P. Sheth, S.K. Gala, and S.B. Navathe. On automatic reasoning for schema integration. International Journal of Intelligent and Cooperative Information Systems, 2(1):23–50, 1993.Google Scholar
  41. S. Spaccapietra, C. Parent, and Y. Dupont. Model independent assertions for integration of heterogeneous schemas. VLDB, 1:81–126, 1992.Google Scholar
  42. M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On rules, procedures, cahing and views in data base systems. In Proceedings ACM SIGMOD-90, 1990.Google Scholar
  43. W. Sull and R. L. Kashyap. A self-organizing knowledge representation scheme for extensible heterogeneous information environment. IEEE Transactions on Knowledge and Data Engineering, 4(2):185–191, April 1992.Google Scholar
  44. D. Woelk, P. Cannata, M. Huhns, W.M. Shen, and C. Tomlinson. Using Carnot for enterprise information integration. In Proceedings of the Second International Conference on Parallel and Distributed Information Systems, 1993.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Alfredo Goñi
    • 1
  • Arantza Illarramendi
    • 2
  • Eduardo Mena
    • 2
  • José Miguel Blanco
    • 2
  1. 1.Departamento de Informática e Ingeniería de SistemasUniversidad de Zaragoza.ZaragozaSpain
  2. 2.Facultad de InformáticaUniversidad del País Vasco.Donostia-San SebastiánSpain

Personalised recommendations