Advertisement

Pharmacy World and Science

, Volume 19, Issue 1, pp 35–44 | Cite as

Part 3: Continuous infusion of relaxants and reversal and monitoring of relaxation

  • L.H.D.J. Booij
Article

Abstract

Continuous infusion is an attractive method of administration when muscle relaxation is needed for a longer period. The pharmacokinetic behaviour of a drug is an important determining factor for the suitability of relaxants for continuous infusion. At present mainly intermediately long acting relaxants are used for this purpose.

At the end of surgery residual curarization may exist and thus anaesthesiologists prefer to be able to reverse the relaxants. The anticholinesterases neostigmine, pyridostigmine, and edrophonium are used clinically for this reason. Their effect is prolonged in patients with renal failure, and also affected during acid‐base disturbances. Some other drugs have been used experimentally for the reversal of neuromuscular blockade, but are inadequate. Special problems can arise when reversal of a mivacurium‐induced or antibiotic‐induced blockade is wanted, or mivacurium was administered.

Monitoring neuromuscular transmission is an important feature to determine the effect of relaxant administration or to detect residual curarization. It is based on stimulation of peripheral nerves with either single twitch, train of four, tetanic or double burst stimulation. The evoked response can be quantitated with mechanomyography, electromyography, or accelerography. The response of the various muscles to nerve stimulation varies due to the different characteristics of the muscles. Clinically, the use of the adductor pollicis muscle is advised.

Accelerography 4‐Aminopyridine Antagonism Anticholinesterases Continuous infusion Electromyography Mechanomyography Monitoring neuromuscular transmission Neuromuscular blockade reversal Reversal and renal failure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vervloet D. Allergy to muscle relaxants and related com-pounds. Clin Allergy 1985;15:501–8.Google Scholar
  2. 2.
    Shorten GD. Postoperative residual curarisation: incidence, aetiology and associated morbidity. Anaesth Int Care 1993;21:782–9.Google Scholar
  3. 3.
    Futter ME, Donati F, Sadikot AS, Bevan DR. Neostigmine antagonism of succinylcholine phase II block: a comparison with pancuronium. Can Anaesth Soc J 1983;30:575–80.Google Scholar
  4. 4.
    Bevan DR, Donati F. Succinylcholine apnoea: attempted reversal with anticholinesterases. Can Anaesth Soc J 1983;30:536–9.Google Scholar
  5. 5.
    Ritchie G, Ebert JP, Jannett TC, Kissin I, Sheppard LC. A microcomputer based controller for neuromuscular block during surgery. Ann Biomed Eng 1985;13:3–15.Google Scholar
  6. 6.
    O'Hara DA, Derbyshire GJ, Overdyk FJ, Bogen DK, Marshall BE. Closed-loop infusion of atracurium with four different anesthetic techniques. Anesthesiology 1991;74:258–63.Google Scholar
  7. 7.
    Assef SJ, Lennon RL, Jones KA, Burke MJ, Behrens TL. A versa-tile, computer-controlled, closed-loop system for continu-ous infusion of muscle relaxants. Mayo Clin Proc 1993;68: 1074–80.Google Scholar
  8. 8.
    Olkola KT, Tammisto T. Quantifying the interaction of rocu-ronium (org 9426) with etomidate, fentanyl, midazolam, propofol, thiopental, and isoflurane using closed-loop feed-back control of rocuronium infusion. Anesth Analg 1994; 78:687–90.Google Scholar
  9. 9.
    Olkola KT, Schwilden H, Appfelstaedt C. Model-based adap-tive closed-loop feedback control of atracurium-induced neuromuscular blockade. Acta Anaesthesiol Scand 1991;35: 420–3.Google Scholar
  10. 10.
    Deslile S, Lebrun H, Bevan DR. Plasma cholinesterase activity and tachyphylaxis during prolonged succinylcholine infu-sion. Anesth Analg 1982;62:941–4.Google Scholar
  11. 11.
    Ramsey FM, Lebowitz PW, Savarese JJ, Ali HH. Clinical char-acteristics of long term succinylcholine infusion under bal-anced anaesthesia. Anesth Analg 1980;59:110–16.Google Scholar
  12. 12.
    Dahaba AA, Rehak PH, list WF. A comparison of mivacurium infusion requirements between young and elderly adult patients. Eur J Anaesthesiol 1996;13:43–8.Google Scholar
  13. 13.
    Hodges UM. Vecuronium infusion requirements in paediat-ric patients in intensive care units: the use of accelerogra-phy. Br J Anaesth 1996;76:23–8.Google Scholar
  14. 14.
    Shanks CA, Fragen RJ, Ling D. Continuous intravenous infu-sion of rocuronium (Org 9426) in patients receiving bal-anced, enflurane, or isoflurane anesthesia. Anesthesiology 1993;78:649–51.Google Scholar
  15. 15.
    McCoy EP, Mirakhur RK, Maddineni VR, Wierda JMKH, Proost JH. Pharmacokinetics of rocuronium after bolus and continuous halothane anaesthesia. Br J Anaesth 1996;76:29–33.Google Scholar
  16. 16.
    Pedersen T, Viby-Mogensen J, Eliasen K, Ringsted C, Henrik-sen E. A one year prospective study of postoperative pulmo-nary complications after neuromuscular blockade by pancu-ronium and atracurium. Anesthesiology 1988;69: A902.Google Scholar
  17. 17.
    Kirkegaard-Nielsen H, Toft P, Severinsen IK, May O. Optimum time for neostigmine administration to antago-nize vecuronium-induced neuromuscular blockade. Eur J Anaesth 1995;12:585–9.Google Scholar
  18. 18.
    Caldwell JE, Robertson EN, Baird WLM. Antagonism of pro-found neuromuscular blockade induced by vecuronium or atracurium: comparison of neosti[g]mine with edrophoni-um. Br J Anaesth 1986;58:1285–9.Google Scholar
  19. 19.
    Wilson IB, Harrison MA. Turonver number of acetylcholines-terase. J Biol Chem 1964;236:2292–5.Google Scholar
  20. 20.
    Deanna A, Scuka N. Time course of neostigmine: action on the endplate response. Neuroscience 1990;118:82–84.Google Scholar
  21. 21.
    Wachtel RE. Comparison of anticholinesterases and their effects on acetylcholine-activated ion channels. Anesthesio-logy 1990;72:496–503.Google Scholar
  22. 22.
    Braga MFM, Rowan EG, Harvey AL, Bowman WC. Prejunctional action of neostigmine on mouse neuromuscu-lar preparations. Br J Anaesth 1993;70:405–10.Google Scholar
  23. 23.
    Blaber LC. The mechanism of the facilitatory action of edr o-phonium in cat skeletal muscle. Br J Pharmacol 1972;46: 498–507.Google Scholar
  24. 24.
    Donati F, Ferguson A, Bevan DR. Twitch depression and train-of-four ratio after antagonism of pancuronium with edrophonium, neostigmine or pyridostigmine. Anesth. Analg. 1983;62:314–16.Google Scholar
  25. 25.
    Booij LHDJ, Crul JF, van der Pol F. The influence of halothane and enflurane on the reversibility of an Org NC45 neuro-muscular blockade in cats. Anaesth Intensivther Notfallmed 1982;17:78–80.Google Scholar
  26. 26.
    Miller RD, Larson Jr, CP, Way WL. Comparative antagonism of d-tubocurarine-, gallamine-, and pancuronium-induced neuromuscular blockade by neostigmine. Anesthesiology 1972;37:503–9.Google Scholar
  27. 27.
    Rupp SM, McChristian JW, Miller Rd. Neostigmine antagon-ises a profound neuromuscular blockade more rapidly than edrophonium. Anesthesiology 1984;61:A297.Google Scholar
  28. 28.
    Beemer GH, Bjorksten AR, Dawson PJ, Dawson RJ, Heenan BJ, Robertson BA. Determinants of the reversal time of com-petitive neuromuscular block by anticholinesterases. Br J Anaesth 1991;66:469–75.Google Scholar
  29. 29.
    Deslile S, Bevan DR. Impaired neostigmine antagonism of pancuronium during enflurane anaesthesia in man. Br J Anaesth 1982;66:54:441–5.Google Scholar
  30. 30.
    Engbaek J, Ostergaard D, Skovgaard LT, Viby-Mogensen J. Reversal of intense neuromuscular blockade following infu-sion of atracurium. Anesthesiology 1990;72;803–6.Google Scholar
  31. 31.
    Goldhill DR, Embree PB, Ali HH, Savarese JJ. Reversal of pan-curonium. Neuromuscular and cardiovascular effects of a mixture of neostigmine and glycopyrronium. Anaesthesia. 1988;43:443–6.Google Scholar
  32. 32.
    Harper NJN, Wallace M, Hall IA. Optimum dose of neostig-mine at two levels of atracurium-induced neuromuscular block. Br J Anaesth 1994;72:82–5.Google Scholar
  33. 33.
    Breen PJ, Doherty WG, Donati F, Bevan DR. The potencies of edrophonium and neostigmine as antagonists of pancuroni-um. Anaesthesia 1985;40:844–7.Google Scholar
  34. 34.
    Young WL, Matteo RS, Ornstein E. Duration of action of neo-stigmine and pyridostigmine in the elderly. Anesth Analg 1988;67:775–8.Google Scholar
  35. 35.
    McCarthy GJ, Cooper AR, Stanley JC, Mirakhur RK. Onset and duration of action of vecuronium in the elderly: com-parison with adults. Br J Anaesth 1992;69:281–3.Google Scholar
  36. 36.
    Cook DR, Chakravorti S, Brandom BW, Stiller RLK. Effects of neostigmine, edrophonium and succinylcholine on the in vitro metabolism of mivacurium: clinical correlates. Anes-thesiology 1992;77:A433.Google Scholar
  37. 37.
    Miller RD, Booij LHDJ, Agoston S, Crul JF. 4-aminopyridine potentiates neostigmine and pyridostigmine in man. Anesthesiology 1979;50:416–20.Google Scholar
  38. 38.
    Booij LHDJ, Miller RD, Jones MJW, Stanski DR. Antagonism of pancuronium and its metabolites by neostigmine in cats. Anesth Analg 1979;58:483–6.Google Scholar
  39. 39.
    Viby-Mogensen J, Jorgensen BC, Ording H. Residual curar-ization in the recovery room. Anesthesiology 1979;50:539–41.Google Scholar
  40. 40.
    Goldhill DR, Wainright AP, Stuart CS, Flynn PJ. Neostigmine after spontaneous recovery from neuromuscular blockade. Effect on depth of blockade monitored with train-of-four and tetanic stimuli. Anaesthesia 1989;44:293–9.Google Scholar
  41. 41.
    Miller RD, Cullen DJ. Renal failure and postoperative respira-tory failure: recurarization. Br J Anaesth 1976;48:253–6.Google Scholar
  42. 42.
    Cronnelly R, Stanski DR, Miller RD, Sheiner LB, Sohn YJ. Renal function, and the pharmacokinetics of neostigmine in anesthetized man. Anesthesiology 1979;51:222–6.Google Scholar
  43. 43.
    Morris RB, Cronnelly R, Miller RD, Stanski DR, Fahey MR. Pharmacokinetics of edrophonium in anephric and renal transplant patients. Br J Anaesth 1981;53:1311–14.Google Scholar
  44. 44.
    Morris RB, Cronnelly R, Miller RD, Stanski DR, Fahey MR. Pharmacokinetics of edrophonium and neostigmine when antagonizing d-tubocurarine neuromuscular blockade in man. Anesthesiology 1981;54:399–402.Google Scholar
  45. 45.
    Popovic L, Kunec-Vajic E. Cholinesterase inhibition by pan-curonium and neostigmine in patients with liver disease. Eur J Anaesthesiol 1990;7:37–41.Google Scholar
  46. 46.
    Ono K, Nagano O, Ohta Y, Kosaka F. Neuromuscular effects of respiratory and metabolic acid-base changes in vitro with and without non-depolarising muscle relaxants. Anesthesio-logy 1990;73:710–16.Google Scholar
  47. 47.
    Aziz L, Ono K, Ohta Y, Morita K, Hirakawa M. The effect of CO 2-induced acid-base changes on the potencies of muscle relaxants and antagonism of neuromuscular block by neo-stigmine in rat in vitro. Anesth Analg 1994;78:322–7.Google Scholar
  48. 48.
    Miller RD, Roderick LL. Diuretic-induced hypokalaemia, pan-curonium neuromuscular blockade and its antagonism by neostigmine. Br J Anaesth 1978;50:541–4.Google Scholar
  49. 49.
    Miller RD, Van Nyhuis LS, Eger EI, II, Way WL. The effect of acid-base balance on neostigmine antagonism of d-tubocu-rarine-induced neuromuscular blockade. Anesthesiology 1975;42:377–83.Google Scholar
  50. 50.
    Miller RD, Roderick LL. Acid-base balance and neostigmine antagonism of pancuronium neuromuscular blockade. Br J Anaesth 1978;50:317–24.Google Scholar
  51. 51.
    Cronnelly R, Stanski DR, Miller RD, Sheiner LB. Pyridostig-mine kinetics with and without renal function. Clin Pharmacol Ther 1980;28:78–81.Google Scholar
  52. 52.
    Cronnelly R, Morris RB, Miller RD. Edrophonium: duration of action and atropine requirement in humans during halo-thane anesthesia. Anesthesiology 1982;57:261–6.Google Scholar
  53. 53.
    Mirakhur RK. Edrophonium and plasma cholinesterase activ-ity. Can Anaesth Soc J 1986;33:588–90.Google Scholar
  54. 54.
    Sunew KY, Hicks RG. Effects of neostigmine and pyridostig-mine on duration of suxamethonium action and pseudo-cholinesterase activity. Anesthesiology 1978;49:188–91.Google Scholar
  55. 55.
    Mirakhur RK, Dundee JW. Glycopyrrolate: Pharmacology and clinical use. Anaesthesia 1983;38:1195–1204.Google Scholar
  56. 56.
    Child CS. Prevention of neostigmine-induced colonic activ-ity. A comparison of atropine and glycopyrronium. Anaesthesia 1984;39:1083–6.Google Scholar
  57. 57.
    Ding Y, Fredman B, White PF. Use of mivacurium during laparoscopic surgery: effect of reversal drugs on postopera-tive recovery. Anesth Analg 1994;78:450–4.Google Scholar
  58. 58.
    King MJ, Milazkiewicz R, Carli F, Deacock AR. Influence of neostigmine on postoperative vomiting. Br J Anaesth 1988; 61;403–6.Google Scholar
  59. 59.
    Janhunen L, Tammisto T. Post-operative vomiting after dif-ferent methods of general anaesthesia. Ann Chir et Gynaecol Fenniae 1972;61:152–9.Google Scholar
  60. 60.
    Boeke AJ, De Lange JJ, van Druenen B, Langemeijer JJM. Effect of antagonizing residual neuromuscular block by neo-stigmine and atropine on postoperative vomiting. Br J Anaesth 1994;72:654–6.Google Scholar
  61. 61.
    Maselli RA, Leung C. Analysis of anticholinesterase-induced neuromuscular transmission failure. Muscle and Nerve 1993;16:548–53.Google Scholar
  62. 62.
    Dawson RM, Poertski M. The interaction of tacrine with ben-zodiazepine and GABA binding sites of guinea pig brain. Neurosci Lett 1991;129:251–3.Google Scholar
  63. 63.
    Irwin RL, Smith HJ. Cholinesterase inhibition by galantha-mine and lycoramine. Biochem Pharmacol 1960 3:147–8.Google Scholar
  64. 64.
    Han SY, Sweeney JE, Bachman ES, Schweiger EJ, Forloni G, Coyle JT, Davis BM, Joullie M. Chemical and pharmacologi-cal characterization of galanthamine, an acetylcholineste-rase inhibitor, and its derivatives. A potential application in Alzheimer's disease. Eur J Med Chem 1992;27:673–87.Google Scholar
  65. 65.
    Cozanitis DA. Experiences with galanthamine hydrobromide as curare antagonist. Der Anaesthesist 1971;20:226–9.Google Scholar
  66. 66.
    Cozanitis DA, Toivakka E. A comparative study of galantha-mine hydrobromide and atropine/neostigmine in conscious volunteers. Der Anaesthesist 1971;20:416–21.Google Scholar
  67. 67.
    Reimann D, Gann H, Dressing H, Muller WE, Aldenhof JB. Influence of the cholinesterase inhibitor galanthamine hydrobromide on normal sleep. Psychiatr Res 1994;51:253–67.Google Scholar
  68. 68.
    Harvey AL. The pharmacology of galanthamine and its ana-logues. Pharmac Ther 1995;68:113–28.Google Scholar
  69. 69.
    Bickel U, Thomsen T, Weber W, Fischer JP, Bachus R, Nitz M, Kewitz H. Pharmacokinetics of galanthamine in humans and corresponding cholinesterase inhibition. Clin Pharmacol Ther 1991;50:420–8.Google Scholar
  70. 70.
    Soni N, Kamp P. 4-Aminopyridine. A review. Anesth Intens Care 1982;10:120–6.Google Scholar
  71. 71.
    Glover WE. The aminopyridines. Gen Pharmacol 1982;13: 259–85.Google Scholar
  72. 72.
    Booij LHDJ, van der Pol F, Crul JF, Miller RD. Antagonism of Org NC45 neuromuscular blockade by neostigmine, pyri-dostigmine and 4-aminopyridine. Anesth Analg 1980;59: 31–4.Google Scholar
  73. 73.
    Booij LHDJ, Miller RD, Crul JF. Neostigmine and 4-aminopy-ridine antagonism of lincomycin-pancuronium neuromus-cular blockade in man. Anesth Analg 1978;57:316–21.Google Scholar
  74. 74.
    Miller RD, Denissen PAF, van der Pol F, Agoston S, Booij LHDJ, Crul JF. Potentiation of neostigmine and pyridostig-mine by 4-aminopyridine in the rat. J Pharm Pharmac 1978;30:699–702.Google Scholar
  75. 75.
    Sia RI, Salt PJ, Erdmann W, Hielkmeyer T, Bencini A, Langrehr D. Antagonism of Ketamine-diazepam anaesthesia by 4-ami-nopyridine in human volunteers. Br J Anaesth 180;52:367–70.Google Scholar
  76. 76.
    Agoston S, Salt PJ, Erdmann W, Hielkmeyer T, Bencini A, Langrehr D. Antagonism of Ketamine-diazepam anaesthesia by 4-aminopyridine in human volunteers. Br J Anaesth 1980;52:367–70.Google Scholar
  77. 77.
    Biessels PTM, Agoston S, Horn AS. Comparison of the phar-macological actions of some new 4-aminopyridine deriva-tives. Eur J Pharmacol 1984;106:319–25.Google Scholar
  78. 78.
    Amaki Y, Kobayashi K, Kibayashi C. In vitro neuromuscular effect of acetaminopyridine-N-oxide. Anesthesiology 1980; 53:S283.Google Scholar
  79. 79.
    Murray NM, Newsom-Davis J. Treatment with oral 4-amino-pyridine in disorders of neuromuscular transmission. Neurology 1981;31:265–71.Google Scholar
  80. 80.
    Lundh H, Nilsson O, Rosen I. Effects of 4-Aminopyridine in disorders of neuromuscular transmission. Neurology 1981; 31:265–71.Google Scholar
  81. 81.
    Davis FA, Stefoski D, Rush J. Orally administered 4-aminopy-ridine improves clinical signs in multiple sclerosis. Ann Neurol 1990;27:186–92.Google Scholar
  82. 82.
    Bever Jr, CT. The current status of studies of aminopyridines in patients with multiple sclerosis. Ann Neurol 1994;36: S118–S121.Google Scholar
  83. 83.
    Wesseling H, Agoston S. Effects of 4-aminopyridine in elder-ly patients with Alzheimer's disease. N Engl J Med. 1984; 310:988–9.Google Scholar
  84. 84.
    Hayes KC. A-aminopyridine and spinal cord injury: a review. Rest.Neurol.Neuroscie. 1994;6:259–70.Google Scholar
  85. 85.
    Brennan JL, Jones SF, McLeod JG. Effect of germine acetate on neuromuscular transmission. J Neurol Sci 1971;13:321–31.Google Scholar
  86. 86.
    Detwiller PB. The effects of germine-3-acetate on neuromus-cular transmission. J. Pharmacol. Exp. Ther. 1972;180:244–54.Google Scholar
  87. 87.
    Hyashi H, Yonemura K, Slimoji K. Antagonism of neuromus-cular block by germine mono acetate. Anesthesiology 1973;38:145–52.Google Scholar
  88. 88.
    Lee C, Au E, Durant NN, Katz RL. Germine monoacetate counteracts dantrolene sodium. Anesthesiology 1980;53: S278.Google Scholar
  89. 89.
    Mirakhur RK, Lavery TD, Briggs LP, Clake RSJ. Effects of neo-stigmine and edrophonium on serum cholinesterase activity. Can Anaesth Soc J 1982;29:55–8.Google Scholar
  90. 90.
    Naguib M, Abdulatif M, Selim M, Al-Ghamdi A, Hanio I, Nouheid R. Dose-response relationships for edrophonium and neostigmine antagonism of mivacurium-induced neu-romuscular block. Br J Anaesth 1993;71:709–14.Google Scholar
  91. 91.
    Trévien V, Lienhart A, Just B, Chandon M, Baras E, Camatte S. Effect of neostigmine at different levels of mivacurium-induced neuromuscular blockade. Acta Anaesthesiol Scand 1995;39(suppl.106):66–69.Google Scholar
  92. 92.
    Kao YJ, Le N, Barker SJ. Neostigmine prolongs profound neuromuscular blockade induced by mivacurium in surgical patients. Anesthesiology 1994;79:A929.Google Scholar
  93. 93.
    Hart PS, Wright PMC, Brown R, Lau M, Sharma M, Miller RD, Gruenke L, Fisher DM. Edrophonium increases mivacuri-um concentrations during constant mivacurium infusion and large doses minimally antagonize paralysis. Anesthesiology 1995;82:912–18.Google Scholar
  94. 94.
    Szenohradszky J, Lau M, Brown R, Sharma ML, Fisher DM. The effect of neostigmine on twitch tension and muscle relaxant concentration during infusion of mivacurium or vecuronium. Anesthesiology 1995;83:83–7.Google Scholar
  95. 95.
    Devcic A, Munshi CA, Gandhi SK, Kampine J. Antagonism of mivacurium neuromuscular block: neostigmine versus edro-phonium. Anest Analg 1995 81:1005–9.Google Scholar
  96. 96.
    Fiekers JF. Neuromuscular block produced by polymyxin B - interaction with endplate ion channels. Eur J Pharmacol 1981;70:77–81.Google Scholar
  97. 97.
    Singh YN, Marshall IG, Harvey AL. Depression of transmitter release and postjunctional sensitivity during neuromuscular block produced by antibiotics. Br J Anaesth 179;51:1027–33.Google Scholar
  98. 98.
    Singh YN, Marshall IG, Harvey AL. Some effects of the ami-noglycoside antibiotic amikacin on neuromuscular and autonomic transmission. Br J Anaesth 1978;50:109–17.Google Scholar
  99. 99.
    Wright JM, Collier B. The site of the neuromuscular block produced by polymyxin B and rolitetracycline. Can J Physiol Pharmacol 1976;56:937–44.Google Scholar
  100. 100.
    Wright JM, Collier B. Characterization of the neuromuscular block produced by clindamycin and lincomycin. Can J Physiol Pharmacol 1976;56:937–44.Google Scholar
  101. 101.
    Booij LHDJ, Miller RD, Crul JF. Neostigmine and 4-aminopy-ridine antagonism of lincomycin-pancuronium neuromus-cular blockade in man. Anesth Analg 1978;57:316–21.Google Scholar
  102. 102.
    Muller J, Suppan P. Case report. Anaesthesia in myotonic dystrophy. Anaesth Intens Care 1977;5:70–3.Google Scholar
  103. 103.
    Mitchell MM, Ali HH, Savarese JJ. Myotonica and neuromus-cular blocking agents. Anesthesiology 1978;49:44–8.Google Scholar
  104. 104.
    Boheimer N, Harris JW, Ward S. Neuromuscular blockade in dystrophia myotonica with atracurium besylate. Anaesthesia 1985;40:872–4.Google Scholar
  105. 105.
    Iwasaki H, Namiki A, Omote K, Omote T, Takahashi T. Response differences of paretic and healthy extremities to pancuronium and neostigmine in hemiplegic patients. Anesth Analg 1985;64:864–6.Google Scholar
  106. 106.
    Baraka A. Suxamethonium block in the myasthenic patient. Correlation with plasma cholinesterase. Anaesthesia 1992; 47:217–19.Google Scholar
  107. 107.
    Kim JM, Mangold J. Sensitivity to both vecuronium and neo-stigmine in a sero-negative myasthenic patient. Br J Anaesth 1989;63:497–500.Google Scholar
  108. 108.
    Viby-Mogensen J, Jørgensen BC, ørding H. Residual curarization in the recovery room. Anesthesiology 1981;47:491–9.Google Scholar
  109. 109.
    Lenmarken C, Löfström JB. Partial curarization in the postop-erative period. Acta Anaesthesiol Scand 1984;28:260–2.Google Scholar
  110. 110.
    Pedersen T, Eliasen K, Henriksen E. A prospective study of risk factors and cardiopulmonary complications associated with anaesthesia and surgery: risk indicators of cardiopul-monary morbidity. Acta Anaesthesiol Scand 1990;34:144–55.Google Scholar
  111. 111.
    Moller JT, Wittrup M, Johansen SH. Hypoxemia in the post-anesthesia care unit: An observer study. Anesthesiology 1990;73:890–5.Google Scholar
  112. 112.
    Andersen BN, Madsen JV, Schurizer BA, Juhl B. Residual cur-arization: a comparative study of atracurium and pancuroni-um. Acta Anaesthesiol Scand 1988;32:79–81.Google Scholar
  113. 113.
    Bevan DR, Smith CE, Donati F. Postoperative neuromuscular blockade: a comparison between atracurium, vecuronium and pancuronium. Anesthesiology 1988;69:272–6.Google Scholar
  114. 114.
    Brull SJ, Ehrenwerth J, Cronelly NR, Silverman DG. Assessment of residual curarization using low-current stimu-lation. Can J Anaesth 1991;38:164–8.Google Scholar
  115. 115.
    Bevan DR, Donati F, Kopman AF. Reversal of neuromuscular blockade. Anesthesiology 1992;77:785–805.Google Scholar
  116. 116.
    Matteo RS, Spector S, Horowitz PE. Relation of serum d-tubocurarine concentration and neuromuscular blockade in man. Anesthesiology 1974;41:440–3.Google Scholar
  117. 117.
    Sokoll MD, Gergis SD. Antibiotics and neuromuscular func-tion. Anesthesiology 1981;55:148–59.Google Scholar
  118. 118.
    Pavlin EG, Holle RH, Schoene RB. Recovery of airway protec-tion compared with ventilation in humans after paralysis with curare. Anesthesiology 1989;70:381–5.Google Scholar
  119. 119.
    O'Connor M, Russell WJ. Muscle strength following anaesthesia with atracurium and pancuronium. Anaesth Intens Care 1988;16:255–9.Google Scholar
  120. 120.
    Viby-Mogensen J, Jensen NH, Engbaek J, ørding H, Skov-gaard LT. Chraemmer-Jorgensen B. Tactile and visual evalua-tion of the response to train-of-four nerve stimulation. Anesthesiology 1985;53:440–3.Google Scholar
  121. 121.
    Brull SJ, Silverman DG. Visual and tactile assessment of neu-romuscular fade. Anesth Analg 1993;77:352–5.Google Scholar
  122. 122.
    Thomas P, Worthlet L, Russel W. How useful is visual and tac-tile assessment of neuromuscular blockade using a peripher-al nerve stimulator? Anaesth.Intens.Care 1984;12:68–73Google Scholar
  123. 123.
    Kopman AF. The relationship of evoked electromyographic and mechanical responses following atracurium in humans. Anesthesiology 1985;65:208–11.Google Scholar
  124. 124.
    Engbaek J, Roed J. Differential effect of pancuronium at the adductor pollicis, the first dorsal interosseous and the hypothenar muscles. An electromyographic and mechano myographic dose-response study. Acta Anaesthesiol Scand 1992;36:664–9.Google Scholar
  125. 125.
    Katz RL. Electromyographic and mechanical effects of sux-amethonium and tubocurarine on twitch, tetanic and post-titanic responses. Br J Anaesth 1973;45:849–59.Google Scholar
  126. 126.
    Harper NJN, Bradshaw EG, Healy TEJ. Evoked electromyo-43.graphic and mechanical responses of the adductor pollicis compared during the onset of neuromuscular blockade by atracurium or alcuronium, and during antagonism by neo-stigmine. Br J Anaesth 1986;58:1278–84.Google Scholar
  127. 127.
    Harper NJN, Martlew R, Strang T, Wallace M. Monitoring neuromuscular block by acceleromyography: comparison of the Mini-accelerograph with the Myograph 2000. Br J Anaesth 1994;72:411–14.Google Scholar
  128. 128.
    Smith DC, Booth JV. Influence of muscle temperature and forearm position on evoked electromyography in the hand. Br J Anaesth 1994;72:407–10.Google Scholar
  129. 129.
    Mortensen CR, Berg H, El-Mahdy A, Viby-Mogensen J. Perioperative monitoring of neuromuscular transmission using acceleromyography prevents residual neuromuscular block following pancuronium. Acta Anaesthesiol Scand 1995;39:797–801.Google Scholar
  130. 130.
    Stanec A, Heyduk J, Stanec G, Orkin LR. Tetanic fade and post-tetanic tension in the absence of neuromuscular block-ing agents in anesthetized man. Anesth Analg 1978;57:102–7.Google Scholar
  131. 131.
    Lee C. Train-of-four quantitation of the competitive neuro-muscular block. Anesth Analg 1975;54:649–53.Google Scholar
  132. 132.
    Gissen AJ, Katz RL. Twitch, tetanus and post tetanic potenti-ation as indices of nerve-muscle block in man. Anesthesio-logy 1969;30:481–7.Google Scholar
  133. 133.
    Bowman WC. Prejunctional and postjunctional cholinoceptors at the neuromuscular junction. Anesth Analg 1980;59: 935–43.Google Scholar
  134. 134.
    Meretoja OA, Taivainen T, Brandom BW, Wirtavuori K. Frequency of train-of-four stimulation influences neuromus-cular response. Br J Anaesth 1994;72:686–7.Google Scholar
  135. 135.
    Lee CM. Train-of-four quantitation of competitive neuro-muscular block. Anesth Analg 1975;54:649–53.Google Scholar
  136. 136.
    Ali HH, Utting JE, Gray C. Stimulus frequency in the detec-tion of neuromuscular block in humans. Br J Anaesth 1970; 42:967–8.Google Scholar
  137. 137.
    Ali HH, Kitz RJ. Evaluation of recovery from nondepolarizing neuromuscular block, using a digital neuromuscular trans-mission analyzer: preliminary report. Anesth Analg 1973; 52:740–4.Google Scholar
  138. 138.
    Engbaek J, Ostergaard D, Viby-Mogensen J. Double burst stimulation (DBS): a new pattern of nerve stimulation to identify residual neuromuscular block. Br J Anaesth 1989;62: 274–8.Google Scholar
  139. 139.
    Brull SJ, Silverman DG. Visual assessment of train-of-four and double-burst-induced fade at submaximal stimulating cur-rents. Anesth Analg 1991;73:627–32.Google Scholar
  140. 140.
    Stanec A, Heyduk J, Stanec G, Orkin LR. Tetanic face and post-tetanic tension in the absence of neuromuscular block-ing agents in anesthetized man. Anesth Analg 1978;57:102–7.Google Scholar
  141. 141.
    Viby-Mogensen J, Howardy-Hansen P, Chraemmer-Jorgen-sen B, Ording H, Engbaek J, Nielsen A. Post-tetanic count (PTC): A new method of evaluating an intense non-depolar-izing neuromuscular blockade. Anesthesiology 1981;55: 458–62.Google Scholar
  142. 142.
    Howardy-Hansen P, Viby-Mogensen J, Gottschau A, Skov-gaard LT, Chraemmer-Jorgensen B, Engbaek J. Tactile evalu-ation of posttetanic count (PTC). Anesthesiology 1984;60: 372–4.Google Scholar
  143. 143.
    Brull SJ, Silvermann DG. Tetanus-induced changes in appar-ent recovery after bolus doses of atracurium and vecuroni-um. Anesthesiology 1992;77:642–5.Google Scholar
  144. 144.
    Stiffel P, Hameroff SR, Blitt CD, Cork RC. Variability in assess-ment of neuromuscular blockade. Anesthesiology 1980;52: 436–7.Google Scholar
  145. 145.
    Caffrey RR, Warren ML, Becker KE. Neuromuscular blockade monitoring comparing the orbicularis oculi and adductor pollicis muscles. Anesthesiology 1986;65:95–7.Google Scholar
  146. 146.
    Foldes FF, Monte AP, Brunn HM, Wolfson B. Study with mus-cle relaxants in unanaesthetized subjects. Anesthesiology 1961;22:230–6.Google Scholar
  147. 147.
    Gal TJ, Smith TC. Partial paralysis with d-tubocurarine and the ventilatory response to CO 2: An example of respiratory sparing? Anesthesiology 1976;45:22–8.Google Scholar
  148. 148.
    Donati F, Antzaka C, Bevan DR. Potency of pancuronium at the diaphragm and the adductor pollicis muscle in man. Anesthesiology 1986;65:1–5.Google Scholar
  149. 149.
    De Troyer A, Bastenier J, Delhez L. Function of respiratory muscles during partial curarization in humans. J Appl Physiol 1980;49:1049–56.Google Scholar
  150. 150.
    Pansard J-L, Chauvin M, Lebrault C, Gauneau P, Duvaldestin P. Effect of an intubating dose of succinylcholine and atracu-rium on the diaphragm and the adductor pollicis muscle in humans. Anesthesiology 1987;67:326–30.Google Scholar
  151. 151.
    Donati F, Meistelman C, Plaud B. Vecuronium neuromuscu-lar blockade at the adductor muscles of the larynx and adductor pollicis. Anesthesiology 1991;74:833–7.Google Scholar
  152. 152.
    Bragg P, Fisher DM, Donati F, Meistelman C, Lau M, Sheiner LB. Comparison of twitch depression of the adductor pollicis and the respiratory muscles. Anesthesiology 1994;80:310–19.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • L.H.D.J. Booij
    • 1
  1. 1.Department of AnaesthesiologyCatholic University NijmegenNijmegenThe Netherlands

Personalised recommendations