Journal of Theoretical Probability

, Volume 13, Issue 1, pp 259–277 | Cite as

An Extension of Vervaat's Transformation and Its Consequences

  • L. Chaumont


Vervaat(18) proved that by exchanging the pre-minimum and post-minimum parts of a Brownian bridge one obtains a normalized Brownian excursion. Let s ∈ (0, 1), then we extend this result by determining a random time ms such that when we exchange the pre-ms-part and the post-ms-part of a Brownian bridge, one gets a Brownian bridge conditioned to spend a time equal to s under 0. This transformation leads to some independence relations between some functionals of the Brownian bridge and the time it spends under 0. By splitting the Brownian motion at time ms in another manner, we get a new path transformation which explains an identity in law on quantiles due to Port. It also yields a pathwise construction of a Brownian bridge conditioned to spend a time equal to s under 0.

Brownian bridge Brownian excursion uniform law path transformation occupation time quantile 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertoin, J. (1991). Décomposition du mouvement brownien avec dérive en un minimum local par juxtaposition de ses excursions positives et négatives. Sém. de Probab. XXV, Lecture Notes in Mathematics, Springer, Berlin, No. 1485, pp. 330–344.Google Scholar
  2. 2.
    Bertoin, J., Chaumont, L., and Yor, M. (1997). Two chain-transformation and their applications to quantiles. J. Appl. Prob. 34, 882–897.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bertoin, J., and Pitman, J. (1994). Path transformations connecting Brownian bridge, excursion and meander. Bull. Sci. Math. 118(2), 147–166.MathSciNetzbMATHGoogle Scholar
  4. 4.
    Biane, P. (1986). Relations entre pont brownien et excursion renormalisée du mouvement Brownien. Ann. Inst. Henri Poincaré 22, 1–7.zbMATHGoogle Scholar
  5. 5.
    Chaumont, L. (1997). Excursion normalisée, méandre et pont pour des processus stables. Bull. Sc. Math. 121, 377–403.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chaumont, L. (1997). A path transformation and its applications to fluctuation theory. J. London Math. Soc. (to appear).Google Scholar
  7. 7.
    Chung, K. L. (1976). Excursions in Brownian motion. Ark. För Math. 14, 155–177.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dassios, A. (1996). Sample quantiles of stochastic processes with stationary and independent increments and of sums of exchangeable random variables. Ann. Appl. Prob. 6(3), 1041–1043.CrossRefGoogle Scholar
  9. 9.
    Denisov, I. V. (1985). A random walk and a Wiener process near a maximum. Theor. Prob. Appl., 713–716.Google Scholar
  10. 10.
    Embrechts, P., Rogers, L. C. G., and Yor, M. (1995). A proof of Dassios's representation of the α-quantile of Brownian motion with drift. Ann. Appl. Prob. 5(3), \(|||||{\kern 1pt} - {\kern 1pt} |||||\).Google Scholar
  11. 11.
    Fitzsimmons, P. J., and Getoor, R. K. (1995). Occupation time distributions for Lévy bridges and excursions. Stoch. Proc. Appl. 58(1), 73–89.CrossRefGoogle Scholar
  12. 12.
    Jeulin, T. (1980). Semi-martingales et grossissement d'une filtration. Lecture Notes in Mathematics, Springer, Berlin, No. 833.Google Scholar
  13. 13.
    Kallenberg, O. (1988). Spreadind and predictable sampling in exchangeable sequences and processes. Ann. Prob. 16(2), 508–534.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kennedy, D. (1976). The distribution of the maximum of the Brownian excursion. J. Appl. Prob. 13, 371–376.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Knight, F. B. (1996). The uniform law for exchangeable and Lévy process bridges. Hommage à P. A. Meyer et J. Neveu, Astérisque.Google Scholar
  16. 16.
    Port, S. C. (1963). An elementary approach to fluctuation theory. J. Math. Anal. Appl. 6, 109–151.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Revuz, D., and Yor, M. (1994). Continuous Martingales and Brownian Motion, Springer, Berlin, Second edition.zbMATHGoogle Scholar
  18. 18.
    Vervaat, W. (1979). A relation between Brownian bridge and Brownian excursion. Ann. Prob. 7, 141–149.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wendel, J. G. (1960). Order statistics of partial sums. Ann. Math. Stat. 31, 1034–1044.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yor, M. (1995). The distribution of Brownian quantiles.J. Appl. Prob. 32, 405–416.MathSciNetCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • L. Chaumont

There are no affiliations available

Personalised recommendations